【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:
售出水量x(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(单位:元) | 165 | 142 | 148 | 125 | 150 |
(1)求y关于x的线性回归方程;
(2)预测售出8箱水的收益是多少元?
附:回归直线的最小二乘法估计公式分别为: =, =﹣,
科目:高中数学 来源: 题型:
【题目】某公司2016年前三个月的利润(单位:百万元)如下:
月份 | 1 | 2 | 3 |
利润 | 2 | 3.9 | 5.5 |
(1)求利润关于月份的线性回归方程;
(2)试用(1)中求得的回归方程预测4月和5月的利润;
(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?
相关公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前项的和Tn.
(3)是否存在自然数m,使得 <Tn<对一切n∈N*恒成立?若存在,求出m的值;
若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解“自助游”是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:
赞成“自助游” | 不赞成“自助游” | 合计 | |
男性 | |||
女性 | |||
合计 |
(1)若在这人中,按性别分层抽取一个容量为的样本,女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节大量游客中随机抽取人赠送精美纪念品,记这人中赞成“自助游”人数为,求的分布列和数学期望.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC= .
(1)求△ABC的面积;
(2)求sin(C﹣A)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在轴上的椭圆的中心是原点,离心率为双曲线离心率的一半,直线被椭圆截得的线段长为.直线: 与轴交于点,与椭圆交于两个相异点,且.
(1)求椭圆的方程;
(2)是否存在实数,使?若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣2|﹣|2x﹣a|,a∈R.
(1)当a=3时,解不等式f(x)>0;
(2)当x∈(﹣∞,2)时,f(x)<0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个实数数列{an}满足条件: (d为常数,n∈N*),则称这一数列“伪等差数列”,d称为“伪公差”.给出下列关于某个伪等差数列{an}的结论:①对于任意的首项a1 , 若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为单调递增数列;③这一数列可以是一个周期数列;④若这一数列的首项为1,伪公差为3,- 可以是这一数列中的一项;n∈N*⑤若这一数列的首项为0,第三项为﹣1,则这一数列的伪公差可以是 .其中正确的结论是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com