精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+sinx(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥l时,
y
x+1
的取值范围是
 
考点:利用导数研究函数的单调性,函数单调性的性质
专题:函数的性质及应用
分析:判断函数f(x)的奇偶性和单调性,将不等式进行转化,利用直线和圆的位置关系,结合数形结合和
y
x+1
的几何意义即可得到结论.
解答: 解:∵f(x)=x+sinx(x∈R),
∴f(-x)=-x-sinx=-(x+sinx)=-f(x),
即f(x)=x+sinx(x∈R)是奇函数,
∵f(y2-2y+3)+f(x2-4x+1)≤0,
∴f(y2-2y+3)≤-f(x2-4x+1)=f[-(x2-4x+1)],
由f'(x)=1-cosx≥0,
∴函数单调递增.
∴(y2-2y+3)≤-(x2-4x+1),
即(y2-2y+3)+(x2-4x+1)≤0,
∴(y-1)2+(x-2)2≤1,
∵y≥1,
∴不等式对应的平面区域为圆心为(2,1),半径为1的圆的上半部分.
y
x+1
的几何意义为动点P(x,y)到定点A(-1,0)的斜率的取值范围.
设k=
y
x+1
,(k>0)
则y=kx+k,即kx-y+k=0.
当直线和圆相切是,圆心到直线的距离d=
|2k-1+k|
1+k2
=
|3k-1|
1+k2
=1,
即8k2-6k=0,解得k=
3
4
.此时直线斜率最大.
当直线kx-y+k=0.经过点B(3,1)时,直线斜率最小,
此时3k-1+k=0,即4k=1,解得k=
1
4

1
4
≤k≤
3
4

故答案为[
1
4
3
4
].
点评:本题主要考查直线和圆的位置关系的应用,函数奇偶性和单调性的判断以及直线斜率的取值范围,综合性较强,运算量较大,利用数形结合是解决本题的基本思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域在R上的函数f(x)满足f(1)=1,f(1-x)=1-f(x),2f(x)=f(4x),且当0≤x1≤x2≤1时,f(x1)≤f(x2),则f(
1
33
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、a?α,b?β,则a与b是异面直线
B、a与b异面,b与c异面,则a与c异面
C、a,b不同在平面α内,则a与b异面
D、a,b不同在任何一个平面内,则a与b异面

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形O′A′B′C′的边长为acm(a>0),它是一个水平放置的平面图形的直观图,则它的原图形OABC的周长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知集合M满足∅?M⊆{1,2,3,4,},且M中至多有一个偶数,这样的集合M有6个;
②函数f(x)=ax2+2(a-1)x+2,在区间(-∞,4)上为减函数,则a的取值范围为0≤a≤
1
5

③已知函数f(x)=
x
x+1
,则f(2)+f(3)+…+f(61)+f(
1
2
)+f(
1
3
)+…+f(
1
61
)=60

④如果函数y=f(x)的图象关于y轴对称,且f(x)=(x-2014)2+1(x≥0),
则当x<0时,f(x)=(x+2014)2-1;
其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2-2x+3,x∈[-1,2]的值域
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次方程x2-(k-1)x+1=0有两个实根,则k的取值范围为(  )
A、[-1,3]
B、(-∞,-1]∪[3,+∞)
C、(-1,3)
D、(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知边长为1的正方形ABCD位于第一象限,且顶点A、D分别在x,y的正半轴上(含原点)滑动,则
OB
OC
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+2的导数为
 

查看答案和解析>>

同步练习册答案