精英家教网 > 高中数学 > 题目详情
16.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a>0)$的左焦点F1(-c,0)(c>0)作圆x2+y2=$\frac{{a}^{2}}{4}$的切线,切点为E,延长F1E交双曲线右支于点P.若E是F1P中点,则双曲线的离心率为(  )
A.$\frac{5}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{10}}{2}$

分析 通过双曲线的特点知原点O为两焦点的中点,利用中位线的性质,求出PF′的长度及判断出PF′垂直于PF,通过勾股定理得到a,c的关系,进而求出双曲线的离心率.

解答 解:如图,记右焦点为F′,则O为FF′的中点,
∵E为PF的中点,
∴OE为△FF′P的中位线,
∴PF′=2OE=a,
∵E为切点,
∴OE⊥PF,
∴PF′⊥PF,
∵点P在双曲线上,
∴PF-PF′=2a,
∴PF=PF′+2a=3a,
在Rt△PFF′中,有:PF2+PF′2=FF′2
∴9a2+a2=4c2,即10a2=4c2
∴离心率e=$\frac{c}{a}$=$\frac{\sqrt{10}}{2}$,
故选:D.

点评 本题主要考查双曲线的简单性质、圆的方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,在圆锥曲线中,求离心率关键就是求三参数a,b,c的关系,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.甲乙两名篮球运动员在4场比赛中的得分情况如图所示.v1,v2分别表示甲、乙二人的平均得分,s1,s2分别表示甲、乙二人得分的方差,那么v1和v2,s1和s2的大小关系是(  )
A.v1>v2,s1>s2B.v1<v2,s1>s2C.v1>v2,s1<s2D.v1<v2,s1<s2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线mx-y+m+2=0与圆C1:(x+1)2+(y-2)2=1相交于A,B两点,点P是圆C2:(x-3)2+y2=5上的动点,则△PAB面积的最大值是3$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线C:y2=2px(p>0)的焦点为F,过F且倾斜角为60°的直线l与抛物线C在第一、四象限分别交于A、B两点,与它的准线交于点P,则$\frac{|AB|}{|AP|}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为(  )
分数12345
人数2010401020
A.3B.2.5C.3.5D.2.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把二项式($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)8的展开式中所有的项重现排成一列,其中有理项都互不相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{16}=1\;\;(a>0)$的左、右焦点分别为F1,F2,点P在椭圆C上,如果|PF1|+|PF2|=10,那么椭圆C的离心率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为ρcosθ-ρsinθ-4=0.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,求点P到曲线C2的距离|PQ|的最大值.

查看答案和解析>>

同步练习册答案