精英家教网 > 高中数学 > 题目详情
如图,在直角三角形ABC中,AD是斜边BC上的高,有很多大家熟悉的性质,例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“=+”等,由此联想,在三棱锥O-ABC中,若三条侧棱OA,OB,OC两两互相垂直,可以推出哪些结论?至少写出两个结论.

【答案】分析:本题考查的知识点是类比推理,在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:由平面几何中点的性质,类比推理空间几何中线的性质;由平面几何中线的性质,类比推理空间几何中面的性质;由平面几何中面的性质,类比推理空间几何中体的性质;故由:“直角三角形中,直角边边长为a,b,斜边边长为c,直角三角形具有性质:c2=a2+b2.”(边的性质),类比到空间可得的结论是“在直角三棱锥中,直角面面积分别为S1,S2,S3,斜面面积为S”,S12+S22+S32=S2
解答:解:(以下仅供参考,不同结论请酌情给分.每个正确结论给(2分),证明给5分)  可以得出有以下结论:
(Ⅰ)三个侧面OAB、OAC、OBC两两互相垂直(或OA⊥BC、OB⊥AC、OC⊥AB)
(Ⅱ)=++(H为△ABC的重心)
(Ⅲ)S△OAB2+S△OAB2+S△OBC2=S△ABC2
以下给出具体的证明:
(1)证明:∵OA⊥OC,OB⊥OC∴OC⊥平面OAB
∴平面OAC⊥平面OAB  平面OBC⊥平面OAB 同理可证平面OBC⊥平面OAC

(2)证明:如图连接AH并延长AH交BC于D连接OD
∵OA⊥面OBC∴OA⊥OD
在Rt△ABC中∵OH⊥OD∴OH•AD=AO•OD
∴OH2•AD2=AO2•OD2
又∵AD2=OA2+OD2=+
∵AD⊥BC,由三垂线定理得:BC⊥OD
∴在Rt△OBC中  OD2•BC2=BO2•CO2
∴OD2=又∵BC2=BO2+CO2
=+②由①②得:=++

(Ⅳ) 证明:如图(延用(Ⅸ)中的字母a,b,c)∵H为垂心∴AD⊥BC
又∵OA、OB、OC两两垂直∴S△OAB=ab   S△OBC=bc  S△OAC=ac  
S△ABC=BC•AD
∴S△OAB2+S△OAC2+S△OBC2=( a2 b2+b2 c2+a2 c2)=a2(b2+c2)+b2 c2…①
又∵在Rt△BOC中,OD⊥BC∴OB2•OC2=b2 c2=OD2•BC2=OD2•(b2+c2)…②
∴②代入①得:S△OAB2+S△OBC2+S△OAC2=(b2+c2)•AD2=BC2•AD2=S△ABC2
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,∠BAC=90°,D为BC的中点,|AB|=2
3
|AC|=
1
2
,以A、B为焦点的椭圆经过点C.
(I)建立适当的直角坐标系,求椭圆的方程;
(II)是否存在不平行于AB的直线l与(I)中椭圆交于不同两点M、N,使(
DM
+
DN
)•
MN
=0
?若存在,求出直线l斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,斜边AB=4.设角A=θ,△ABC的面积为S
(1)试用θ表示S,并求S的最大值;
(2)计算
AB
AC
+
BC
BA
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在直角三角形ABC中,已知AB=a,∠ACB=30°,∠B=90°,D为AC的中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起,二面角A′-BD-C的大小记为θ.

(1)求证:平面A′EF⊥平面BCD;
(2)当A′B⊥CD时,求sinθ的值;
(3)在(2)的条件下,求点C到平面A′BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)如图,在直角三角形ABC的斜边AB上有一点P,它到这个三角形两条直角边的距离分别为4和3,则△ABC面积的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角三角形ABC中,∠BAC=90°,D为BC的中点,数学公式数学公式,以A、B为焦点的椭圆经过点C.
(I)建立适当的直角坐标系,求椭圆的方程;
(II)是否存在不平行于AB的直线l与(I)中椭圆交于不同两点M、N,使数学公式?若存在,求出直线l斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案