精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是边长为2的正方形,中点,点上且平面延长线上,,交,且.

1)证明:平面

2)求点到平面的距离.

【答案】1)证明见解析;(2

【解析】

1)根据中位线的性质以及平行的传递性证明四边形为平行四边形,从而得到,最后由线面平行的判定定理证明即可;

2)根据线面垂直,面面垂直的性质以及判定定理,得出平面,结合等体积法,即可得出答案.

1)证明:取的中点,连结

,且

因为,且

又∵

所以

即四边形为平行四边形

所以

平面平面

所以平面

2平面平面

显然相交,平面

平面平面,所以平面平面

的中点,连结

又∵平面平面平面

平面

平面

平面

在等腰中,

设点到平面的距离为h,利用等体积可得

∴点到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中ABCA1B1C1ABACAB3AC4B1CAC1

1)求AA1的长;

2)试判断在侧棱BB1上是否存在点P,使得直线PC与平面AA1C1C所成角和二面角B—A1C—A的大小相等,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为为椭圆上任意一点,当时,的面积为,且.

1)求椭圆的方程;

2)已知直线经点,与椭圆交于不同的两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,设直线过椭圆的上顶点和右焦点,坐标原点到直线的距离为2.

1)求椭圆的方程.

2)过点且斜率不为零的直线交椭圆两点,在轴的正半轴上是否存在定点,使得直线的斜率之积为非零的常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)讨论上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面α平面βlACα内不同的两点,BDβ内不同的两点,且ABCD直线lMN分别是线段ABCD的中点.下列判断正确的是(  )

A.ABCD,则MNl

B.MN重合,则ACl

C.ABCD相交,且ACl,则BD可以与l相交

D.ABCD是异面直线,则MN不可能与l平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx

1)讨论函数fx)的单调性;

2)证明:a1时,fx+gx)﹣(1lnxe

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈三中总务处的老师要购买学校教学用的粉笔,并且有非常明确的判断一盒粉笔是优质产品非优质产品的方法.某品牌的粉笔整箱出售,每箱共有20盒,根据以往的经验,其中会有某些盒的粉笔为非优质产品,其余的都为优质产品.并且每箱含有012盒非优质产品粉笔的概率为0.70.20.1.为了购买该品牌的粉笔,校总务主任设计了一种购买的方案:欲买一箱粉笔,随机查看该箱的4盒粉笔,如果没有非优质产品,则购买,否则不购买.买下所查看的一箱粉笔为事件箱中有件非优质产品为事件.

1)求

2)随机查看该品牌粉笔某一箱中的四盒,设为非优质产品的盒数,求的分布列及期望;

3)若购买100箱该品牌粉笔,如果按照主任所设计方案购买的粉笔中,箱中每盒粉笔都是优质产品的箱数的期望比随机购买的箱中每盒粉笔都是优质产品的箱数的期望大10,则所设计的方案有效.讨论该方案是否有效.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为矩形,,侧面SAD是以AD为斜边的等腰直角三角形,且平面平面ABCDMN分别为ADSC的中点.

1)求证:平面SAB

2)求直线BN与平面SAB所成角的余弦值.

查看答案和解析>>

同步练习册答案