精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,底面分别为的中点,为侧棱上的动点

(Ⅰ)求证:平面平面

(Ⅱ)若为线段的中点,求证:平面

(Ⅲ)试判断直线与平面是否能够垂直。若能垂直,求的值;若不能垂直,请说明理由

【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)直线BC1与平面APM不能垂直,详见解析

【解析】

(Ⅰ)由等腰三角形三线合一得;由线面垂直性质可得;根据线面垂直的判定定理知平面;由面面垂直判定定理证得结论;(Ⅱ)取中点,可证得;利用线面平行判定定理和面面平行判定定理可证得平面平面;根据面面平行性质可证得结论;(Ⅲ)假设平面,由线面垂直性质可知,利用相似三角形得到,从而解得长度,可知满足垂直关系时,不在棱上,则假设错误,可得到结论.

(Ⅰ)中点

平面 平面

平面

平面 平面

平面 平面平面

(Ⅱ)取中点,连接

分别为的中点

四边形为平行四边形

平面平面 平面

分别为的中点

分别为的中点

平面平面 平面

平面 平面平面

平面 平面

(Ⅲ)假设平面,由平面得:

时,

由已知得:

,解得: 假设错误

直线与平面不能垂直

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆 + =1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1 , F2 . 若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:

(l)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市出租车起步价为10元,最长可租乘3km(3km),以后每1km1.6元(不足1km,按1km计费),若出租车行驶在不需等待的公路上,则出租车的费用y()与行驶的里程xkm)之间的函数图象大致为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国内汽车市场中,国产SUV出现了持续不退的销售热潮,2018年国产SUV销量排行榜完整版已经出炉,某品牌车型以惊人的销量成绩击退了所有虎视眈眈的对手,再次霸气登顶,下面是该品牌国产SUV分别在2017年与2018711月份的销售量对比表

时间

7

8

9

10

11

2017年(单位:万辆)

2.8

3.9

3.5

4.4

5.4

2018年(单位:万辆)

3.8

3.9

4.5

4.9

5.4

(Ⅰ)若从7月至11月中任选两个月份,求至少有一个月份这两年该国产品牌SUV销量相同的概率。

(Ⅱ)分别求这两年7月至11月的销售数据的平均数,并直接判断哪年的销售量比较稳定。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为集合AB{x|x<a}

(1)求集合A

(2)ABa的取值范围;

(3)若全集U{x|x4}a=-1U AA(U B)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈ .人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是(
A.d≈
B.d≈
C.d≈
D.d≈

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(I)已知函数f(x)=rx﹣xr+(1﹣r)(x>0),其中r为有理数,且0<r<1.
(1)求f(x)的最小值;
(2)试用(1)的结果证明如下命题:设a1≥0,a2≥0,b1 , b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2
(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xαr=αxα1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面命题中,正确的命题有(  )

①若n1,n2分别是不同平面α,β的法向量,n1n2αβ;

②若n1,n2分别是平面α,β的法向量,αβn1·n2=0;

③若n是平面α的法向量,b,cα内两个不共线的向量,abc(λ,μR),n·a=0;

④若两个平面的法向量不垂直,则这两个平面一定不垂直.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案