已知关于的函数,其导函数为.记函数 在区间上的最大值为.
(1) 如果函数在处有极值,试确定的值;
(2) 若,证明对任意的,都有;
(3) 若对任意的恒成立,试求的最大值.
(1),;(2)证明详见解析;(3).
解析试题分析:本题主要考查导数的运算、利用导数求函数的极值和最值等基础知识,考查学生的转化能力、分析问题解决问题的能力、计算能力.第一问,先对求导,由于在x=1处有极值,则,,列出方程组,解出b和c的值,由于得到了两组值,则需要验证看是否符合已知条件,若不符合需舍掉;第二问,可以利用二次函数图象和性质直接证明,也可以利用反证法证明出矛盾,从而得到正确结论;第三问,结合第二问的结论,可以直接得到时的情况,当时需分,,三种情况讨论,最后综合所有情况再得出结论.
科目:高中数学
来源:
题型:解答题
某商场预计从2013年1月份起的前x个月,顾客对某商品的需求总量p(x)(单位:件)与x的关系近似的满足,且)。该商品第x月的进货单价q(x)(单位:元)与x的近似关系是
科目:高中数学
来源:
题型:解答题
已知函数(k为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.
科目:高中数学
来源:
题型:解答题
已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为-1.
科目:高中数学
来源:
题型:解答题
已知函数f(x)=-ax(a∈R,e为自然对数的底数).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(1) ∵,由在处有极值,可得
,解得,或 2分
若,,则,此时函数没有极值; 3分
若,,则,此时当变化时,,的变化情况如下表:
(1)写出这种商品2013年第x月的需求量f(x)(单位:件)与x的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问该商场2013年第几个月销售该商品的月利润最大,最大月利润为多少元?
(1)求k的值及的单调区间;
(2)设其中为的导函数,证明:对任意,.
(1)求的值及函数的极值;(2)证明:当时,;
(3)证明:对任意给定的正数,总存在,使得当,恒有.
(1)讨论函数f(x)的单调性;
(2)若a=1,函数在区间(0,+)上为增函数,求整数m的最大值.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号