精英家教网 > 高中数学 > 题目详情
(2012•东城区模拟)已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点A(
12
,m)
,A点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设M(x0,y0)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x0+2,-y0).
(3)直线x+my+1=0与抛物线交于E,F两点,在抛物线上是否存在点N,使得△NEF为以EF为斜边的直角三角形.
分析:(1)利用抛物线的定义即可得出;
(2)由题意知直线PQ与x轴不平行,设PQ所在直线方程为x=my+n,代入y2=2x中得 y2-2my-2n=0.利用根与系数的关系及斜率计算公式即可证明;
(3)利用(2)的结论,只要定点满足△≥0即可.
解答:解:(1)由题意可设抛物线的方程为y2=2px,则由抛物线的定义可得
p
2
+
1
2
=1
,即p=1,
所以抛物线的方程为 y2=2x.
(2)由题意知直线PQ与x轴不平行,设PQ所在直线方程为x=my+n,代入y2=2x中得 y2-2my-2n=0.
所以y1+y2=2m,y1y2=-2n,其中y1,y2分别是P,Q的纵坐标,
因为MP⊥MQ,所以kMP•kMQ=-1.
y1-y0
x1-x0
y2-y0
x2-x0
=-1
,所以(y1+y0)(y2+y0)=-4.
y1y2+(y1+y2)y0+y02+4=0,(-2n)+2my0+2x0+4=0,即n=my0+x0+2.
所以直线PQ的方程为x=my+my0+x0+2,
即x=m(y+y0)+x0+2,它一定过定点(x0+2,-y0).
(3)假设N(x0,y0)为满足条件的点,则由(2)知,点(x0+2,-y0)在直线x+my+1=0上,
所以x0+2-my0+1=0,(x0y0)是方程组
y2=2x
x-my+3=0
的解,
消去x得y2-2my+6=0,△=4m2-24≥0所以存在点N满足条件.
点评:本题综合考查了抛物线的定义、直线与抛物线的位置关系、斜率的计算公式、直线过定点问题等基础知识与基本技能,考查了推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区一模)已知sin(45°-α)=
2
10
,且0°<α<90°,则cosα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:An=
F(n,2)
F(2,n)
(n∈N+),若对任意正整数n,都有an≥ak(k∈N*成立,则ak的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1处的切线方程;
(Ⅱ)若f(x)在R上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=x
1
2
,给出下列命题:
①若x>1,则f(x)>1;
②若0<x1<x2,则f(x2)-f(x1)>x2-x1
③若0<x1<x2,则x2f(x1)<x1f(x2);
④若0<x1<x2,则
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正确命题的序号是
①④
①④

查看答案和解析>>

同步练习册答案