精英家教网 > 高中数学 > 题目详情
17.已知全集U={1,2,3,4,5,6},①A⊆U;②若x∈A,则2x∉A;③若x∈∁UA,则2x∉∁UA,则同时满足条件①②③的集合A的个数为8.

分析 由条件可得:当1∈A,则2∉A,即2∈CUA,则4∉CUA,即4∈A,但元素3与集合A的关系不确定,3属于A时,6属于A的补集;3属于A的补集时,6属于A;而元素5没有限制.

解答 解:由①A⊆U;②若x∈A,则2x∉A;③若x∈CUA,则2x∉CUA.
当1∈A,则2∉A,即2∈CUA,则4∉CUA,即4∈A,但元素3与集合A的关系不确定,
3属于A时,6属于A的补集;3属于A的补集时,6属于A;
而元素5没有限制.
∴A={1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,6},{1,3,4,5}.,
同时满足条件①②③的集合A的个数为8个.
故答案为:8.

点评 本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{cn}对任意的n∈N*,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$成立,求数列$\{\frac{1}{{{{log}_3}{c_{2n}}.{{log}_3}{c_{2n+2}}}}\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知α∈(0,$\frac{π}{2}$),且tan(α+$\frac{π}{4}$)=3,则lg(8sinα+6cosα)-lg(4sinα-cosα)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和Sn=n2+n,则an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同;曲线C的方程是$ρ=2\sqrt{2}sin(θ-\frac{π}{4})$,直线l的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=1+tsinα\end{array}\right.$(t为参数,0≤α<π),设P(2,1),直线l与曲线C交于A,B两点.
(1)当α=0时,求|AB|的长度;
(2)求|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知二次函数f(x)=ax2+bx+c的图象与x轴有两个交点,它们之间的距离为6,且对称轴方程为x=1,与y轴的交点坐标为(0,8).
(1)求函数f(x)的解析式;
(2)若点P(x,y)是此二次函数图象上任意一点,求u=y2+(x-1)2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过点(4,-2),倾斜角为120°的直线方程是(  )
A.$\sqrt{3}$x+y+2-4$\sqrt{3}$=0B.$\sqrt{3}$x+3y+6+4$\sqrt{3}$=0C.x+$\sqrt{3}$y-2$\sqrt{3}$-4=0D.x+$\sqrt{3}$y+2$\sqrt{3}$-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设平面直角坐标系中,A(-1,1),B(-1,2),C(-4,1).
(1)求直线BC的一般式方程;
(2)求△ABC的外接圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项为Sn,且Sn=$\frac{1}{4}$(an+1)2对于任意n∈N*恒成立.
(1)求{an}的通项公式;
(2)若an>0,设cn=$\frac{{a}_{n}}{{2}^{n}}$,数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

同步练习册答案