精英家教网 > 高中数学 > 题目详情

【题目】如图,在底面为矩形的四棱锥中, .

(1)证明:平面平面

(2)若异面直线所成角为 ,求二面角的大小.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

(1)由题意结合几何关系可证得平面,结合面面垂直的判断定理即可证得平面平面.

(2)建立空间直角坐标系,结合半平面的法向量可得二面角的大小是.

试题解析:

(1)证明:由已知四边形为矩形,得

,∴平面.

,∴平面.

平面,∴平面平面.

(2)解:以为坐标原点,建立如图所示的空间直角坐标系.

,则

所以 ,则,即

解得舍去).

是平面的法向量,则,即

可取.

是平面的法向量,则

可取,所以

由图可知二面角为锐角,所以二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义在R上的奇函数,且x>0时,f(x)=1+( x
(1)求函数f(x)的解析式;
(2)画出函数f(x)的草图;

(3)利用图象直接写出函数f(x)的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆过点,圆的方程为.

(1)求圆的方程;

(2)由圆上的动点向圆作两条切线分别交轴于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:2x≤256且log2x≥
(1)求x的取值范围;
(2)求函数log2 )log2 )的最大值和最小值以及相应的x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.

1)当时,求函数的表达式;

2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x| ≤( x1≤9},集合B={x|log2x<3},集合C={x|x2﹣(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(UB)∪A;
(2)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+2ax﹣a﹣1,x∈[0,2],a为常数.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)﹣m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如表对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)求广告费支出x与销售额y回归直线方程 =bx+a(a,b∈R);
已知b=
(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆上的动点,过点轴的垂线段 为垂足,点满足.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)若两点分别为椭圆的左右顶点, 为椭圆的左焦点,直线与椭圆交于点,直线的斜率分别为,求的取值范围.

查看答案和解析>>

同步练习册答案