精英家教网 > 高中数学 > 题目详情
设z=x+y,其中实数x,y满足
x+2y≥o
x-y≤o
0≤y≤k
若z的最大值为12,则z的最小值为(  )
A、-3B、3C、-6D、6
考点:简单线性规划
专题:计算题,作图题,不等式的解法及应用
分析:由题意作出其平面区域,直线y=k,y=-x+12,y=x三线相交于一点,联立y=-x+12,y=x解出交点坐标,代入求k.
解答: 解:由题意作出其平面区域:

则直线y=k,y=-x+12,y=x三线相交于一点,
由y=-x+12,y=x联立可解得,
x=6,y=6,
则k=6.
故选D.
点评:本题考查了简单线性规划,作图要细致认真,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线
x
4
+
y
3
=1椭圆
x2
16
+
y2
9
=1相交于A,B两点,该椭圆上点P,使得△PAB面积等于3,这样的点P共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n2+n
2
,n∈N*

(1)求数列{an}的通项公式
(2)设bn=2an+an,求数列{ bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
ax3+
1
2
ax2-a+1的图象经过四个象限,则实数a的取值范围是(  )
A、
5
6
<a<1
B、a<1或a>
6
5
C、a>-
5
6
或a<-1
D、1<a<
6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n(1+an)
2
(n=1,2,3,…)
(1)求a1的值;
(2)求证:(n-2)an+1=(n-1)an-1(n≥2);
(3)判断数列{an}是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直线x-y=0与x-3y+2=0的交点A,及B(0,4),C(3,0)组成三角形ABC,D为BC边上的中点,求:
(1)AD所在直线方程
(2)三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知异面直线a,b所成的角为50°,P为空间一定点,过点P且与a,b所成的角相等的直线有4条,则过点P的直线与直线a所成角的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)=x2+2x-5,则f(x)的解析式为(  )
A、f(x)=x2
B、f(x)=x2-6
C、f(x)=x2+6
D、f(x)=x2+6x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:|x-m|>1,命题Q:
2-x
1+x
≥0,若命题P是命题Q的必要非充分条件,则m的取值范围是
 

查看答案和解析>>

同步练习册答案