分析 (I)利用等差数列与等比数列的通项公式即可得出;
(II)利用“裂项求和”即可得出.
解答 解:(Ⅰ)依题意得:a2=a1+d=a1+2,a4=a1+3d=a1+6,
∵a2是a1与a4的等比中项,
∴$a_2^2={a_1}•{a_4}$${({a_1}+2)^2}={a_1}({a_1}+6)$,
解得a1=2,
∴an=a1+(n-1)d=2n,即an=2n.
(Ⅱ)由(Ⅰ)知an=2n,
∴${b_n}={a_{\frac{n(n+1)}{2}}}$=n(n+1),
∴$\frac{1}{{b}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=$1-\frac{n}{n+1}$
=$\frac{n}{n+1}$.
∴数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和为Tn=$\frac{n}{n+1}$.
点评 本题考查了“裂项求和”、等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
第一扇门 | 第二扇门 | 第三扇门 | 第四扇门 |
1000 | 2000 | 3000 | 5000 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-2,2] | B. | [0,2] | C. | [-2,0] | D. | $[{\frac{9}{8},2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com