3£®ÒÑÖªº¯Êýy=x+$\frac{a}{x}$ÓÐÈçÏÂÐÔÖÊ£ºµ±a£¾0ʱ£¬º¯ÊýÔÚ£¨0£¬$\sqrt{a}$]µ¥µ÷µÝ¼õ£¬ÔÚ[$\sqrt{a}$£¬+¡Þ£©µ¥µ÷µÝÔö£®¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©=|t£¨x+$\frac{4}{x}$£©-5|£¬ÆäÖÐt£¾0£®
£¨1£©Èôº¯Êýf£¨x£©·Ö±ðÔÚÇø¼ä£¨0£¬2£©ºÍ£¨2£¬+¡Þ£©Éϵ¥µ÷£¬ÇótµÄÈ¡Öµ·¶Î§
£¨2£©µ±t=1ʱ£¬Èô·½³Ìf£¨x£©-k=0ÓÐËĸö²»ÏàµÈµÄʵÊý¸ùx1£¬x2£¬x3£¬x4£¬Çóx1+x2+x3+x4µÄÈ¡Öµ·¶Î§
£¨3£©µ±t=1ʱ£¬ÊÇ·ñ´æÔÚʵÊýa£¬bÇÒ0£¼a£¼b¡Ü2£¬Ê¹µÃf£¨x£©ÔÚÇø¼ä[a£¬b]ÉϵÄÈ¡Öµ·¶Î§ÊÇ[ma£¬mb]£¬Èô´æÔÚ£¬Çó³öʵÊýmµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâµÃ4t-5¡Ý0£¬ÓÉ´ËÄÜÇó³ötµÄÈ¡Öµ·¶Î§£®
£¨2£©Éèx1£¼x2£¼x3£¼x4£¬Ôòx1£¬x4ÊÇ·½³Ì£¨x-$\frac{4}{x}$£©-5-k=0µÄÁ½¸ö¸ù£¬x2£¬x3ÊÇ·½³Ì-£¨x+$\frac{4}{x}$£©+5-k=0µÄÁ½¸ù£¬ÓÉ´ËÄÜÇó³öx1+x2+x3+x4µÄ·¶Î§£®
£¨3£©Áîf£¨x£©=0£¬µÃx=1»òx=4£¬ÍƵ¼³ö0£¼a£¼b£¼1»ò1£¼a£¼b¡Ü2£®ÓÉ´ËÀûÓ÷ÖÀàÌÖÂÛ˼ÏëºÍ¹¹Ôì·¨ÄÜÇó³ö´æÔÚÂú×ãÌõ¼þµÄa£¬b£¬´ËʱmµÄÈ¡Öµ·¶Î§ÊÇ[$\frac{1}{2}$£¬$\frac{9}{16}$£©£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃy=t£¨x+$\frac{4}{x}$£©-5ÔÚ£¨0£¬2]µÝ¼õ£¬È¡Öµ·¶Î§ÊÇ[4t-5£¬+¡Þ£©£¬
ÔÚ[2£¬+¡Þ£©µÝÔö£¬È¡Öµ·¶Î§ÊÇ[4t-5£¬+¡Þ£©£¬
¡à4t-5¡Ý0£¬½âµÃt¡Ý$\frac{5}{4}$£¬
¡àtµÄÈ¡Öµ·¶Î§ÊÇ[$\frac{5}{4}$£¬+¡Þ£©£®
£¨2£©t=1ʱ£¬·½³ÌÓÐËĸö²»µÈʵÊý¸ùx1£¬x2£¬x3£¬x4£¬Éèx1£¼x2£¼x3£¼x4£¬
Ôòx1£¬x4ÊÇ·½³Ì£¨x-$\frac{4}{x}$£©-5-k=0µÄÁ½¸ö¸ù£¬
ÕûÀí£¬µÃx2-£¨5+k£©x+4=0£¬¡àx1+x4=5+k£¬
ͬÀí£¬x2£¬x3ÊÇ·½³Ì-£¨x+$\frac{4}{x}$£©+5-k=0µÄÁ½¸ù£¬
ÕûÀí£¬µÃx2-£¨5-k£©x+4=0£¬¡àx3+x4=5-k£¬
¡àx1+x2+x3+x4=10£®
£¨3£©Áîf£¨x£©=0£¬µÃx=1»òx=4£¬
ÓÉa£¼b£¬ma£¼mb£¬µÃm£¾0£¬
Èô1¡Ê[a£¬b]£¬Ôòma=0£¬Ã¬¶Ü£®
¹Ê0£¼a£¼b£¼1»ò1£¼a£¼b¡Ü2£®
µ±0£¼a£¼b£¼1ʱ£¬f£¨a£©=mb£¬f£¨b£©=ma£¬
$\left\{\begin{array}{l}{a+\frac{4}{a}-5=mb}\\{b+\frac{4}{b}-5=ma}\end{array}\right.$£¬Ïûm£¬µÃa+b=5£¬Ã¬¶Ü£®
µ±1£¼a£¼b¡Ü2ʱ£¬f£¨a£©=ma£¬f£¨b£©=mb£¬
$\left\{\begin{array}{l}{-a-\frac{4}{a}+5=ma}\\{-b-\frac{4}{b}+5=mb}\end{array}\right.$£¬¼´a£¬bÊÇ·½³Ì£¨m+1£©x2-5x+4=0ÔÚ£¨1£¬2]ÉÏÁ½¸ö²»µÈ¸ù£¬
¼Çg£¨x£©=£¨m+1£©x2-5x+4£¬
Ôò$\left\{\begin{array}{l}{g£¨1£©£¾0}\\{g£¨2£©£¾0}\\{25-16£¨m+1£©£¾0}\\{1£¼\frac{5}{2£¨m+1£©}£¼2}\end{array}\right.$£¬½âµÃ$\frac{1}{2}¡Üm£¼\frac{9}{16}$£¬
×ÛÉÏËùÊö£¬´æÔÚÂú×ãÌõ¼þµÄa£¬b£¬´ËʱmµÄÈ¡Öµ·¶Î§ÊÇ[$\frac{1}{2}$£¬$\frac{9}{16}$£©£®

µãÆÀ ±¾Ì⿼²éʵÊýµÄÈ¡Öµ·¶Î§µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ·ÖÀàÌÖÂÛ˼Ïë¡¢¹¹Ôì·¨¡¢º¯ÊýÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÕýʵÊýa£¬bÂú×ãa+b=2£¬Ôò$\frac{1}{a}+\frac{2}{b}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{{3+2\sqrt{2}}}{2}$B£®3C£®$\frac{3}{2}$D£®$3+2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¼¯ºÏA={x|y=$\sqrt{3-x}$}£¬¼¯ºÏB={x|x¡Ý2}£¬A¡ÉB=£¨¡¡¡¡£©
A£®[0£¬3]B£®[2£¬3]C£®[2£¬+¡Þ£©D£®[3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔ²O£ºx2+y2=a2£¨a£¾0£©£¬µãA£¨0£¬4£©£¬B£¨2£¬2£©£®
£¨1£©ÈôÏ߶ÎABµÄÖд¹ÏßÓëÔ²OÏàÇУ¬ÇóʵÊýaµÄÖµ£»
£¨2£©¹ýÖ±ÏßABÉϵĵãPÒýÔ²OµÄÁ½ÌõÇÐÏߣ¬ÇеãΪM£¬N£¬Èô¡ÏMPN=60¡ã£¬Ôò³ÆµãPΪ¡°ºÃµã¡±£®ÈôÖ±ÏßABÉÏÓÐÇÒÖ»ÓÐÁ½¸ö¡°ºÃµã¡±£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÔ²x2+£¨y-2£©2=1±»Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏ߽صõÄÏÒ³¤Îª$\sqrt{3}$£¬Ôò¸ÃË«ÇúÏßÀëÐÄÂʵÄֵΪ$\frac{2\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®º¯Êýy=log3£¨x2-2x£©£¼0µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨-¡Þ£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®º¯Êýf£¨x£©=2x-1ÔÚ£¨1£¬2£©ÄÚµÄƽ¾ù±ä»¯ÂÊΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êýf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{2}£¨x+1£©£¬x£¾0}\\{{2}^{-x}-1£¬x¡Ü0}\end{array}\right.$£¬Ôòf[f£¨-2£©]=2£»Èôf£¨x0£©£¼3£¬Ôòx0µÄÈ¡Öµ·¶Î§ÊÇ£¨-2£¬7£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÒ»¸öÉÈÐεÄÖܳ¤Îª¶¨Öµa£¬ÇóÆäÃæ»ýµÄ×î´óÖµ£¬²¢Çó´ËʱԲÐĽǦÁµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸