三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。
(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小。
(1)证明详见解析;(2)60°
【解析】
试题分析:(Ⅰ)先利用线面垂直的判定定理证明BC⊥平面PAB,再利用面面垂直的判定定理证明平面PAB⊥平面PBC;(2)过A作则ÐEFA为所求.然后求出AB=,PB=2,PC=3及AE,AF,在RtAEF中求解即可.
试题解析: (1)证明:∵PA^面ABC,\PA^BC, ∵AB^BC,且PA∩AB=A,\BC^面PAB
而BCÌ面PBC中,\面PAB^面PBC. ……5分
(2)过A作
则ÐEFA为B−PC−A的二面角的平面角 8分
由PA=,在RtDPBC中,cosÐCPB=.
RtDPAB中,ÐPBA=60°. \AB=,PB=2,PC=3 \AE= =
同理:AF= 10分
∴sin==, 11分
∴=60°. 12分
另解:向量法:由题可知:AB=,BC=1,建立如图所示的空间直角坐标系 7分
B(0,0,0),C(1,0,0),A(0,,0),P(0,,),假设平面BPC的法向量为=(x1,y1,z1),
∴
取z1=,可得平面BPC法向量为=(0,−3,) 9分
同理PCA的法向量为=(2,−,0) 11分
∴cos<,>==,所求的角为60° 12分
考点:1. 平面与平面垂直的判定;2.直线与平面所成的角和二面角.
科目:高中数学 来源:2013-2014学年四川成都外国语学校高三12月月考文科数学试卷(解析版) 题型:解答题
三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。
(1)证明:平面PAB⊥平面PBC;
(2)若,,PB与底面ABC成60°角,分别是与的中点,是线段上任意一动点(可与端点重合),求多面体的体积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com