精英家教网 > 高中数学 > 题目详情

【题目】当急需住院人数超过医院所能收治的病人数量时就会发生“医疗资源挤兑”现象,在新冠肺炎爆发期间,境外某市每日下班后统计住院人数,从中发现:该市每日因新冠肺炎住院人数均比前一天下班后统计的住院人数增加约25%,但每日大约有200名新冠肺炎患者治愈出院,已知该市某天下班后有1000名新冠肺炎患者住院治疗,该市的医院共可收治4000名新冠肺炎患者,若继续按照这样的规律发展,该市因新冠肺炎疫情发生“医疗资源挤兑”现象,只需要约( )

参考数据:.

A.7B.10C.13D.16

【答案】C

【解析】

利用数列表示出题目的已知条件,由可求得的最小值,从而求得发生“医疗资源挤兑”现象的时间.

,即.,即数列是以为首项,公比为的等比数列,所以,所以.,化简得,根据参考数据可知时,发生“医疗资源挤兑”现象.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某农科院为试验冬季昼夜温差对反季节大豆新品种发芽的影响,对温差与发芽率之间的关系进行统计分析研究,记录了6天昼夜温差与实验室中种子发芽数的数据如下:

日期

11

12

13

14

15

16

温差(摄氏度)

10

11

12

13

8

9

发芽数(粒)

26

27

30

32

21

24

他们确定的方案是先从这6组数据中选出2组,用剩下的4组数据求回归方程,再用选取的两组数据进行检验.

1)求选取的2组数据恰好是相邻2天数据的概率;

2)若由线性回归方程得到的估计数据与实际数据的误差不超过1粒,则认为得到的线性回归方程是可靠的.请根据12345日的数据求出关于的线性回归方程(保留两位小数),并检验此方程是否可靠.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测生产线上某种零件的质量,从产品中随机抽取100个零件,测量其尺寸,得到如图所示的频率分布直方图.若零件尺寸落在区间之内,则认为该零件合格,否则认为不合格.其中分别表示样本的平均值和标准差,计算得(同一组中的数据用该组区间的中点值作代表).

1)已知一个零件的尺寸是,试判断该零件是否合格;

2)利用分层抽样的方法从尺寸在的样本中抽取6个零件,再从这6个零件中随机抽取2个,求这2个零件中恰有1个尺寸小于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如下统计图,根据该统计图,下列说法错误的是(

A.2019年全年手机市场出货量中,5月份出货量最多

B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小

C.2019年全年手机市场总出货量低于2018年全年总出货量

D.201812月的手机出货量低于当年8月手机出货量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆相外切,且与直线相切.

1)记圆心的轨迹为曲线,求的方程;

2)过点的两条直线与曲线分别相交于点,线段的中点分别为.如果直线的斜率之积等于1,求证:直线经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,其前项和为,数列是公比大于0的等比数列,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)令,求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点与定点的距离和该动点到直线的距离的比是常数

1)求动点轨迹方程

2)已知点,问在轴上是否存在一点,使得过点的任一条斜率不为0的弦交曲线两点,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为的坐标满足圆方程,且圆心满足.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,过垂直的直线交圆两点,为线段中点,若的面积 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵中,且有鳖臑C1-ABB1和鳖臑,现将鳖臑沿线BC1翻折,使点C与点B1重合,则鳖臑经翻折后,与鳖臑拼接成的几何体的外接球的表面积是______.

查看答案和解析>>

同步练习册答案