精英家教网 > 高中数学 > 题目详情
(2009•枣庄一模)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
3

(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A-BE-P的大小.
分析:(I)连接BD,由已知中四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,我们可得BE⊥AB,PA⊥BE,由线面垂直的判定定理可得BE⊥平面PAB,再由面面平行的判定定理可得平面PBE⊥平面PAB;
(II)由(I)知,BE⊥平面PAB,进而PB⊥BE,可得∠PBA是二面角A-BE-P的平面角.解Rt△PAB即可得到二面角A-BE-P的大小.
解答:证明:(I)如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,
△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD,又AB∥CD,所以BE⊥AB,
又因为PA⊥平面ABCD,BE?平面ABCD,
所以PA⊥BE,而PA∩AB=A,因此 BE⊥平面PAB.
又BE?平面PBE,所以平面PBE⊥平面PAB.
解:(II)由(I)知,BE⊥平面PAB,PB?平面PAB,所以PB⊥BE.
又AB⊥BE,所以∠PBA是二面角A-BE-P的平面角.
在Rt△PAB中,tan∠PBA=
PA
AB
=
3
,∠PBA=60°
..
故二面角A-BE-P的大小为60°.
点评:本题考查的知识点是与二面角有关的立体几何综合题,平面与平面垂直的判定,其中(I)的关键是熟练掌握线线垂直、线面垂直及面面垂直之间的转换,(II)的关键是构造出∠PBA是二面角A-BE-P的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•枣庄一模)已知数列{an}的各项均是正数,其前n项和为Sn,满足(p-1)Sn=p2-an,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)设bn=
12-logpan
(n∈N*),求数列{bnbn+1}的前n项和Tn
的取值范围;
(3)是否存在正整数M,使得n>M时,a1a4a7…a3n-2>a78恒成立?若存在,求出相应的M的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)设(5x-
1
x
)n
的展开式的各项系数和为M,二项式系数和为N,若M-N=240,则展开式中x的系数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)先后抛掷两枚骰子,每次各1枚,求下列事件发生的概率:
(1)事件A:“出现的点数之和大于3”;
(2)事件B:“出现的点数之积是3的倍数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)设复数z的共轭复数是
.
z
,若复数z1=3+4i,z2=t+i,且z1
.
z2
是实数,则实数t=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)一个几何体的三视图如图所示,则该几何体外接球的表面积为(  )

查看答案和解析>>

同步练习册答案