精英家教网 > 高中数学 > 题目详情
8.有一隧道,内设双行线公路,同方向有两个车道(共有四个车道),每个车道宽为3m,此隧道的截面由一个长方形和一抛物线构成.如图所示,隧道高8m,宽16m,为了保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方面上高度之差至少为0.25m,靠近中轴线的车道为快车道,两侧的车道为慢车道,求车辆通过隧道时,慢车道的限制高度(用分数表示).

分析 根据题意,适当建立坐标系,如:以抛物线的对称轴为y轴,路面为x轴,可确定抛物线的顶点坐标及与x轴右交点坐标,设抛物线的顶点式,把右交点坐标代入,可求抛物线解析式;规定车辆必须在中心线右侧距道路边缘2米这一范围内行驶,即此时车子的右边横坐标为6,代入解析式求此时的纵坐标,回答题目问题.

解答 解:如图,以抛物线的对称轴为y轴,路面为x轴,建立坐标系,
由已知可得,抛物线顶点坐标为(0,6),与x轴的一个交点(8,0),
设抛物线解析式为y=ax2+6,
把(8,0)代入解析式,
得a=-$\frac{3}{32}$,
所以,抛物线解析式为y=-$\frac{3}{32}$x2+6,
当x=6时,y≈4.3,
∴慢车道的限制高度为 4.3米.

点评 实际问题中的抛物线问题,一般要建立直角坐标系解决,适当建立坐标系可使抛物线解析式形式上简单,便于利用题目的已知条件求解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.下列命题中正确的是③④.(填序号)
①若直线a不在α内,则a∥α;
②若直线l上有无数个点不在平面α内,则l∥α;
③若l与平面α平行,则l与α内任何一条直线都没有公共点;
④平行于同一平面的两直线可以相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知M(-1,0),F(1,0),动点P满足$\overrightarrow{MP}•\overrightarrow{MF}=2|{\overrightarrow{FP}}|$,过F的直线交P的轨迹C于A,B两点,若AB的垂直平分线经过点Q(0,5),求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式组$\left\{\begin{array}{l}x+y-3≤0\\ x-y+3≥0\\ y-1≥0\end{array}\right.$表示的平面区域的面积等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱台ABCD-A1B1C1D1中,D1D⊥ABCD,底面ABCD是平行四边形,AB=AD=2A1B1,∠BAD=60°.
(1)求证:BB1⊥AC.
(2)连结AC,BD,设交点O,连结B1O.设AB=2,D1D=2,求三棱锥B1-ABO外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设e是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{k}$=1的离心率,且e∈($\frac{1}{2}$,1),则实数k的取值范围是$(0,3)∪(\frac{16}{3},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,程序框图的输出值S=(  )
A.21B.-21C.15D.28

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知k∈N*,若曲线x2+y2=k2与曲线xy=k无交点,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=3ax2-2ax+1在区间[-1,1]上有且只有一个零点,则实数a的取值范围.

查看答案和解析>>

同步练习册答案