精英家教网 > 高中数学 > 题目详情

【题目】给出下列函数:①f(x)= ,g(x)=x+1;②f(x)=|x|,g(x)= ;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函数的是(
A.①②③
B.①③
C.②③
D.②

【答案】C
【解析】解:对于①,函数f(x)= =x+1(x≠1),与函数g(x)=x+1(x∈R)的定义域不同,不是同一函数;
对于②,函数f(x)=|x|(x∈R),与g(x)= =|x|(x∈R)的定义域相同,对应关系也相同,是同一函数;
对于③,函数f(x)=x2﹣2x﹣1(x∈R),与g(t)=t2﹣2t﹣1(t∈R)的定义域相同,对应关系也相同,是同一函数.
以上,是同一函数的是②③.
故选:C.
【考点精析】通过灵活运用判断两个函数是否为同一函数,掌握只有定义域和对应法则二者完全相同的函数才是同一函数即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为,将曲线为参数),经过伸缩变换后得到曲线.

1)求曲线的参数方程;

2)若点的曲线上运动,试求出到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+(2+lga)x+lgb,f(﹣1)=﹣2且f(x)≥2x恒成立,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017锦州质量检测(二)如图,在四棱锥中,底面为直角梯形, ,平面底面 的中点, 是棱上的点,

(Ⅰ)求证:平面平面

(Ⅱ)若三棱锥的体积是四棱锥体积的,设,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求实数a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,棱长为1 ,点为线段上的动点(包含线段端点),则下列结论正确的______

①当时, 平面

②当时, 平面

的最大值为

的最小值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0)在其定义域上为奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣2x.
(1)求f(x)的解析式,并画出的f(x)图象;

(2)设g(x)=f(x)﹣k,利用图象讨论:当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个函数:①y=3﹣x;② ;③y=x2+2x﹣10;④ ,其中值域为R的函数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案