【题目】选修4-4:坐标系与参数方程
已知圆锥曲线(为参数)和定点,、是此圆锥曲线的左、右焦点,以原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)求直线的直角坐标方程;
(2)经过点且与直线垂直的直线交此圆锥曲线于、两点,求的值.
科目:高中数学 来源: 题型:
【题目】关于空间直角坐标系中的一点,有下列说法:
①点到坐标原点的距离为;
②的中点坐标为;
③点关于轴对称的点的坐标为;
④点关于坐标原点对称的点的坐标为;
⑤点关于坐标平面对称的点的坐标为.
其中正确的个数是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足,
(1)求数列{an}的通项公式;
(2)求证:数列{an}中的任意三项不可能成等差数列;
(3)设,Tn为{bn}的前n项和,求证.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为[-1,5],部分对应值如下表,的导函数的图象如图所示,下列关于的命题:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
①函数的极大值点为0,4;
②函数在[0,2]上是减函数;
③如果当时,的最大值是2,那么的最大值为4;
④当时,函数有4个零点.
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,有下列结论:
①的最大值为;
②的最小正周期是;
③在区间上是减函数;
④直线是函数的一条对称轴方程.
其中正确结论的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知一个八面体各棱长均为1,四边形ABCD为正方形,则下列命题中不正确的是
A. 不平行的两条棱所在直线所成的角为或 B. 四边形AECF为正方形
C. 点A到平面BCE的距离为 D. 该八面体的顶点在同一个球面上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,曲线, 极坐标方程分别为, .
(Ⅰ)和交点的极坐标;
(Ⅱ)直线的参数方程为(为参数),与轴的交点为,且与交于, 两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com