【题目】某地西红柿从月日起开始上市.通过市场调查,得到西红柿种植成本(就是每公斤西红柿的种植成本,单位:元)与上市时间(单位:天)的数据如下表:
上市时间 | 50 | 110 | 250 |
种植成本 | 150 | 108 | 150 |
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本与上市时间的变化关系:;;;,并求出函数解析式;
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.
科目:高中数学 来源: 题型:
【题目】如图,已知PA⊥平面ABCD,且四边形ABCD为矩形,M、N分别是AB、PC的中点.
(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在区间(﹣2,a)(a>0)上任取一个数m,若函数f(x)=3x+m﹣3 在区间[1,+∞)无零点的概率不小于 ,则实数a能取的最小整数是( )
A.1
B.3
C.5
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆Γ: =1(a>b>0)的左右焦点分别为F1 , F2 , 焦距为2c,若直线y= 与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1 , 则该椭圆的离心率等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市出租车的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9 元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km)).
(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?
(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且a1=2,an+1=2Sn+2.
(1)求数列{an}的通项公式;
(2)若数列{bn}的各项均为正数,且bn是 与 的等比中项,求bn的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项a1=1,且an+1= (n∈N*).
(1)证明:数列{ }是等差数列,并求数列{an}的通项公式;
(2)设bn=anan+1 , 求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com