【题目】用组成没有重复数字的五位数abcde,其中随机取一个五位数,满足条件的概率为________.
【答案】
【解析】
五位数有个,可用分类讨论思想求得满足条件的五位数的个数.由四个绝对值中最大值分别为3,2,1分类可得,然后可计算概率.
没有重复数字的五位数有个,
,由于四个绝对值最小为1,最大的不可能为4,
若最大值为3的五位数有12543,34521,54123,32145共4个,
四个绝对值最大为2,只有1个是2时,五位数有:21345,12354,54312,45321共4个,
四绝对值中两个为2,两个为1时,这样的五位数有:13245,31245,21345,54231,54213,45312,53421,35421,12435,12453共10个,
四个绝对值都等于1的五位数有:12345,54321共2个,
综上满足题意的五位数有4+4+10+2=20个,
∴所求概率为.
故答案为:.
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形中,,,为边的中点,将沿直线翻折成,设为线段的中点.则在翻折过程中,给出如下结论:
①当不在平面内时,平面;
②存在某个位置,使得;
③线段的长是定值;
④当三棱锥体积最大时,其外接球的表面积为.
其中,所有正确结论的序号是______.(请将所有正确结论的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为坐标原点,动点在圆上,过作轴的垂线,垂足为,点满足.
(1)求点的轨迹的方程;
(2)直线上的点满足.过点作直线垂直于线段交于点.
(ⅰ)证明:恒过定点;
(ⅱ)设线段交于点,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系中,曲线的方程为,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.若将曲线上的所有点的横坐标缩小到原来的一半,纵坐标伸长到原来的倍,得曲线.
(1)写出直线和曲线的直角坐标方程;
(2)设点, 直线与曲线的两个交点分别为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某植物学家培养出一种观赏性植物,会开出红花或黄花,已知该植物第一代开红花和黄花的概率都是,从第二代开始,若上一代开红花,则这一代开红花的概率是,开黄花的概率是;若上一代开黄花,则这一代开红花的概率是,开黄花的概率是.记第n代开红花的概率为,第n代开黄花的概率为.
(1)求;
(2)①证明:数列为等比数列;
②第代开哪种颜色花的概率更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的五面体中,是正方形,是等腰梯形,且平面平面,为的中点,,.
(1)求证:平面平面;
(2)为线段的中点,在线段上,记,是线段上的动点. 当为何值时,三棱锥的体积为定值?证明此时二面角为定值,并求出其余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省为迎接新高考,拟先对考生某选考学科的实际得分进行等级赋分,再按赋分后的分数从高分到低分划A、B、C、D、E五个等级,考生实际得分经赋分后的分数在到1之间.在等级赋分科学性论证时,对过去一年全省高考考生的该学科成绩重新赋分后进行分析,随机抽取2000名学生的该学科赋分后的成绩,得到如下频率分布直方图:(不考虑缺考考生的试卷)
附:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974,=14.59,∑(xi-)2pi=213
(1)求这2000名考生赋分后该学科的平均(同一组中数据用该组区间中点作代表);
(2)由频率分布直方图可以认为,学生经过赋分以后的成绩X服从正态分布X~N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2:
(i)利用正态分布,求P(50.41<X<79.59);
(ii)某市有20000名高三学生,记Y表示这20000名高三学生中赋分后该学科等级为A等(即得分大于79.59)的学生数,利用(i)的结果,求EY.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com