精英家教网 > 高中数学 > 题目详情
20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2和上顶点B在直线3x+$\sqrt{3}$y-3=0上,M、N为椭圆C上不同两点,且满足kBM•kBN=$\frac{1}{4}$.
(1)求椭圆C的标准方程;
(2)证明:直线MN恒过定点;
(3)求△BMN的面积的最大值,并求此时MN直线的方程.

分析 (1)椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2和上顶点B在直线3x+$\sqrt{3}$y-3=0上,可得椭圆的右焦点为F2(1,0),上顶点为B$(0,\sqrt{3})$,可得c=1,b=$\sqrt{3}$,a2=b2+c2,即可得出.
(2)由(1)知B$(0,\sqrt{3})$,设M(x1,y1),N(x2,y2),?当直线MN斜率不存在,则x1=x2,y1=-y2,又$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{3}$=1,与kBM•kBN=$\frac{1}{4}$,不符合.当斜率存在时,设直线MN方程为y=kx+m,与椭圆方程联立:(4k2+3)x2+8kmx+4(m2-3)=0,又kBM•kBN=$\frac{1}{4}$,代入化简即可得出.
(3)由△>0,m=2$\sqrt{3}$,可得4k2-9>0,设点B到直线MN的距离为d,则S△BMN=$\frac{1}{2}$|MN|d,又|MN|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,d=$\frac{|k×0-\sqrt{3}+2\sqrt{3}|}{\sqrt{1+{k}^{2}}}$,代入S△BMN化简即可得出.

解答 解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2和上顶点B在直线3x+$\sqrt{3}$y-3=0上,
∴椭圆的右焦点为F2(1,0),上顶点为B$(0,\sqrt{3})$,
故c=1,b=$\sqrt{3}$,a2=b2+c2=4,
∴所求椭圆标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(2)由(1)知B$(0,\sqrt{3})$,设M(x1,y1),N(x2,y2),
?当直线MN斜率不存在,则x1=x2,y1=-y2,又$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{3}$=1,
∴kBM•kBN=$\frac{3-{y}_{1}^{2}}{{x}_{1}^{2}}$=$\frac{3}{4}$≠$\frac{1}{4}$,不符合.
当斜率存在时,设直线MN方程为y=kx+m,
联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去y得:(4k2+3)x2+8kmx+4(m2-3)=0,
∴x1+x2=$\frac{-8km}{4{k}^{2}+3}$,x1•x2=$\frac{4({m}^{2}-3)}{4{k}^{2}+3}$,
又kBM•kBN=$\frac{1}{4}$,
∴$\frac{{y}_{1}-\sqrt{3}}{{x}_{1}}$$•\frac{{y}_{2}-\sqrt{3}}{{x}_{2}}$=$\frac{1}{4}$,即4y1y2-4$\sqrt{3}$(y1+y2)+12-x1x2=0,
又y1=kx1+m,y2=kx2+m,
y1+y2=k(x1+x2)+2m=$\frac{6m}{4{k}^{2}+3}$.
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=$\frac{3{m}^{2}-12{k}^{2}}{4{k}^{2}+3}$.
代入(*)化简得${m}^{2}-3\sqrt{3}$m+6=0,解得m=$\sqrt{3}$,m=2$\sqrt{3}$,
又x1x2≠0,∴m=2$\sqrt{3}$,即y=kx+2$\sqrt{3}$,
∴直线恒过定点$(0,2\sqrt{3})$.
(3)由△>0,m=2$\sqrt{3}$,可得4k2-9>0,
设点B到直线MN的距离为d,则S△BMN=$\frac{1}{2}$|MN|d,
又|MN|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,d=$\frac{|k×0-\sqrt{3}+2\sqrt{3}|}{\sqrt{1+{k}^{2}}}$,
∴S△BMN=$\frac{1}{2}$×$\sqrt{1+{k}^{2}}$×$\sqrt{(\frac{-8km}{4{k}^{2}+3})^{2}-4×\frac{4({m}^{2}-3)}{4{k}^{2}+3}}$×$\frac{\sqrt{3}}{\sqrt{1+{k}^{2}}}$=$\frac{6\sqrt{4{k}^{2}-9}}{4{k}^{2}+3}$=$\frac{6}{\sqrt{4{k}^{2}-9}+\frac{12}{\sqrt{4{k}^{2}-9}}}$$≤\frac{\sqrt{13}}{2}$,
当且仅当4k2-9=12,即k=$±\frac{\sqrt{21}}{2}$时,△BMN面积有最大值为$\frac{\sqrt{13}}{2}$,
此时直线的方程为$\sqrt{21}x$+2y-4$\sqrt{3}$=0或$\sqrt{21}$x-2y+4$\sqrt{3}$=0.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、点到直线的距离公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,F1是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点,A和B是以O为圆心,以|OF1|为半径的圆与该左半椭圆的两个交点,且△F1AB是等边三角形,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题正确的是(  )
A.若a>b,则ac2>bc2B.若a>b>0,c>d>0,则$\frac{a}{d}>\frac{b}{c}$
C.若a<b<0,则ab<b2D.若$\frac{a}{b}>1$,则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C的普通方程为(x-1)2+y2=3,过点M(1,2)的直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=2+tsinα\end{array}\right.$(t为参数,α为直线l的倾斜角).
(1)若直线l被圆C截得的弦AB的长为2,求直线l的倾斜角;
(2)求过点M引圆C的切线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F是抛物线x2=y的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到x轴的距离为(  )
A.$\frac{3}{4}$B.1C.$\frac{5}{4}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{a+lnx}{x}$在x=1处取得极值.
(1)求a的值,并讨论函数f(x)的单调性;
(2)当x∈[1,+∞)时,f(x)≥$\frac{m}{1+x}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=sinxcosx-cos2x+$\frac{1}{2}$在区间[0,$\frac{π}{2}$]上的最小值是(  )
A.-1B.-$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.建造一个容积为24m3,深为2m,宽为3m的长方体无盖水池,如果池底的造价为120元/m3,池壁的造价为80元/m3,求水池的总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中B种型号产品比A种型号产品多8件.那么此样本的容量n=(  )
A.80B.120C.160D.60

查看答案和解析>>

同步练习册答案