精英家教网 > 高中数学 > 题目详情

【题目】用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为21,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

【答案】解:设长方体的宽为xm),则长为2x(m),高为

.

故长方体的体积为

从而

V′x)=0,解得x=0(舍去)或x=1,因此x=1.

0x1时,V′x)>0;当1x时,V′x)<0

故在x=1Vx)取得极大值,并且这个极大值就是Vx)的最大值。

从而最大体积VV′x)=9×12-6×13m3),此时长方体的长为2 m,高为1.5 m.

答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3

【解析】

试题分析:设长方体的长和宽分别为,则高为,所以长方体的体积为,令(舍去)或,当时,单调递增,当时,单调递减,所以当时,函数取得最大值,此时长方体的长宽高分别为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的对边分别为a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若 =2,且b=2 ,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD= ,且点M和N分别为B1C和D1D的中点.
(I)求证:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且 ,数列{bn}满足 ,则数列{anbn}的前n项和Tn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥PABCD底面ABCD是正方形侧面PAD⊥底面ABCDPAPDADEF分别为PCBD的中点.

求证:(1)EF∥平面PAD

(2)PA⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数满足, 函数的图像是的图像的一部分. 若关于的方程个不同的实数根, 则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log3(9x+1)+mx为偶函数,g(x)= 为奇函数.
(Ⅰ)求m﹣n的值;
(Ⅱ)若函数y=f(x)与 的图象有且只有一个交点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案