【题目】如图,直三棱柱中,,,分别是的中点.
(1)证明:平面平面;
(2)求三棱锥的高.
【答案】(1)证明见解析;(2)1.
【解析】分析:(1)要证明平面平面,利用平面与平面垂直的判定定理,在其中一个平面内找一条直线与另一个平面垂直。由,是的中点,可得。因为三棱柱为直三棱柱,所以平面,进而可得。由已知条件直三棱柱中,,,分别是的中点.可得:,进而得∽,所以,所以。因为,由直线与平面垂直的判定定理可得平面,再由平面与平面垂直的判定定理可得平面平面。(2)求三棱锥的高,直接作高不容易判断垂足的位置,故可以用等体积法求高。由(1)可知可用 来求。由(1)知直线平面ADE,故求,,,进而求得。由条件可求得, ,知三角形边长要求面积,应先求一个角,故由余弦定理推论可得:,进而求,可求, 设三棱锥的高为,由,得:,解得.
详解:(1)由已知得:
所以∽
所以,所以
又因为,是的中点,所以
所以平面,所以
而,所以平面
又平面,
所以平面平面;
(2)设三棱锥的高为,因为,
所以,
由已知可求得, ,
在中,由余弦定理的推论可得 ,
所以,所以,
由,得:,所以.
科目:高中数学 来源: 题型:
【题目】某地煤气公司规定,居民每个月使用的煤气费由基本月租费、保险费和超额费组成.每个月的保险费为3元,当每个月使用的煤气量不超过am3时,只缴纳基本月租费c元;如果超过这个使用量,超出的部分按b元/m3计费.
(1)请写出每个月的煤气费y(元)关于该月使用的煤气量x(m3)的函数解析式;
(2)如果某个居民7~9月份使用煤气与收费情况如下表,请求出a,b,c,并画出函数图象;
月份 | 煤气使用量/m3 | 煤气费/元 |
7 | 4 | 4 |
8 | 10 | 10 |
9 | 16 | 19 |
其中,仅7月份煤气使用量未超过am3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育部门为了了解全市高一学生的身高发育情况,从本市全体高一学生中随机抽取了100人的身高数据进行统计分析。经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.
(I)求该市高一学生身高高于1.70米的概率,并求图1中的值.
(II)若从该市高一学生中随机选取3名学生,记为身高在的学生人数,求的分布列和数学期望;
(Ⅲ)若变量满足且,则称变量满足近似于正态分布的概率分布.如果该市高一学生的身高满足近似于正态分布的概率分布,则认为该市高一学生的身高发育总体是正常的.试判断该市高一学生的身高发育总体是否正常,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 ,过点的直线的参数方程为(为参数),与交于两点
(1) 求的直角坐标方程和的普通方程;
(2) 若,,成等比数列,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生 450 人)中,采用分层抽样的方法从中抽取名学生进行调查.
(1)已知抽取的名学生中含女生45人,求的值及抽取到的男生人数;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的列联表. 请将列联表补充完整,并判断是否有 99%的把握认为选择科目与性别有关?说明你的理由;
(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率.
0.05 | 0.01 | |
3.841 | 6.635 |
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx﹣cosx).
(1)求函数f(x)的最小正周期及单调递减区间:
(2)将f(x)的图象向左平移个单位后得到函数g(x)的图象,若方程g(x)=m在区间[0,]上有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 过点,离心率为.
(1)求椭圆的方程;
(2), 是过点且互相垂直的两条直线,其中交圆于, 两点, 交椭圆于另一个点,求面积取得最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:
附:的观测值
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,其离心率,点P为椭圆上的一个动点,面积的最大值为.
(1)求椭圆的标准方程;
(2)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点,,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com