精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}为单调递减的等差数列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=|an|,求数列{bn}的前项n和Tn

【答案】
(1)解:设数列{an}的公差为d,由a1+a2+a3=21得a2=7,

∴a1=7﹣d,a3=7+d,

∵a1﹣1,a2﹣3,a3﹣3成等比数列,

,即42=(6﹣d)(4+d),

解得d1=4(舍),d2=﹣2,

∴an=a2+(n﹣2)d=7+(n﹣2)(﹣2)=﹣2n+11


(2)解:

设数列{an}的前项n和为Sn,则

当n≤5时,

当n≥6时,Tn=b1+b2+…+bn=a1+a2+…+a5﹣(a6+a7+…+an

=


【解析】(1)由条件a1﹣1,a2﹣3,a3﹣3成等比数列,可得 ,又因为a1+a2+a3=21,a1+a3=2a2 , 解得a1和d,即可求出通项公式;(2)bn=|an|= ,分类讨论再利用等差数列的前n项和公式即可得Tn
【考点精析】关于本题考查的数列的前n项和和数列的通项公式,需要了解数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为: =1(a>0),其焦点在x轴上,离心率e=
(1)求该椭圆的标准方程;
(2)设动点P(x0 , y0)满足 ,其中O为坐标原点,M,N是椭圆C上的点,直线OM与ON的斜率之积为﹣ ,求证:x02+2y02为定值.
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;

(2)写出函数f(x)的解析式和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 ,且, 为线段上一点, ,且的中点.

(Ⅰ)证明: 平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣4x﹣5≥0},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中所有正确的序号是
①函数f(x)=ax1+3(a>0且a≠1)的图象一定过定点P(1,4);
②函数f(x﹣1)的定义域是(1,3),则函数f(x)的定义域为(2,4);
③已知f(x)=x5+ax3+bx﹣8,且f(﹣2)=8,则f(2)=﹣8;
④f(x)= 为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若 恒成立,求实数的取值范围;

(Ⅲ)当时,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2﹣2ax+b+1(a>0)在区间[2,3]上有最大值4,最小值1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)= .若不等式g(2x)﹣k2x≥0对任意x∈[1,2]恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,点M、N分别为线段A1B、AC1的中点.

(1)求证:MN∥平面BB1C1C;
(2)若D在边BC上,AD⊥DC1 , 求证:MN⊥AD.

查看答案和解析>>

同步练习册答案