精英家教网 > 高中数学 > 题目详情

【题目】在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于分的选手定为合格选手,直接参加第二轮比赛,大于等于分的选手将直接参加竞赛选拔赛.已知成绩合格的名参赛选手成绩的频率分布直方图如图所示,其中的频率构成等比数列.

1)求的值;

2)估计这名参赛选手的平均成绩;

3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为,假设每名选手能否通过竞赛选拔赛相互独立,现有名选手进入竞赛选拔赛,记这名选手在竞赛选拔赛中通过的人数为随机变量,求的分布列和数学期望.

【答案】(1) (2)84(3)分布列见解析,1.

【解析】

(1)利用频率分布直方图的性质列式求解即可.

(2) 利用频率分布直方图求平均数的方法求解即可.

(3)易得随机变量满足二项分布,再根据二项分布的分布列与数学期望求解即可.

:(1)由题意,得

解得

(2)估计这名选手的平均成绩为.

(3)由题意知,,

可能取值为,

所以

所以的分布列为

的数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求证; 

2)求平面与平面所成二面角的大小;

3)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则的取值范围是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接2000年的到来,某地组织了一次乒乓球迎春幸运赛.首先,通过身份号抽选出2000名选手,编号为1,2,…,2000,他们当中任两人都可以组成一对双打选手,每对选手的编号之和称为他们的“和号”.规定:“和号”相同的两对选手方有资格进行幸运双打赛.比赛开始前,组委会首先从2000个编号中随机抽出65名幸运选手,然后找出“和号”相同的两对选手进行幸运双打赛(凡同一“和号”的选手分在同一区进行单循环).求证:无论怎样抽选,总有选手进行幸运赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,且这六名同学答题正确与否相互之间没有影响.

1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;

2)用表示甲班总得分,求随机变量的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1EBC的中点.

1)求证:AEB1C

2)求异面直线AEA1C所成的角的大小;

3)若GC1C中点,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.

(1)证明:BD⊥平面ABB1A1

(2)比较四棱锥D—ABB1A1与四棱锥D—A1B1C1D1的体积的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下面平面几何中的常见结论在立体几何中也成立的所有序号______.

①四边形内角和为

②垂直的两条直线必相交;

③垂直同一条直线的两条直线平行;

④平行同一条直线的两条直线平行;

⑤四边相等的四边形,其对角线垂直;

⑥到三角形三边距离相等的点是这个三角形的内心;

⑦到一个角的两边距离相等的点必在这个角的角平分线上;

⑧在平面几何中有一组平行线(至少3条)被两条直线所截得的对应线段成比例的结论,则这一结论可推广到立体几何中一组平行平面(至少3个)被两条直线所截得的对应线段也成比例.”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.

x

6

8

10

12

y

2

3

5

6

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

(3)试根据(2)中求出的线性回归方程,预测记忆力为14的学生的判断力.

查看答案和解析>>

同步练习册答案