精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0)

(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)在(I)的结论下,设φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(Ⅲ)设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
(I)依题意:h(x)=lnx+x2-bx.
∵h(x)在(0,+∞)上是增函数,
h′(x)=
1
x
+2x-b≥0
对x∈(0,+∞)恒成立,
b≤
1
x
+2x
,∵x>0,则
1
x
+2x≥2
2

∴b的取值范围是(-∞,2
2
]

(II)设t=ex,则函数化为y=t2+bt,t∈[1,2].
y=(t+
b
2
)2-
b2
4

∴当-
b
2
≤1
,即-2≤b≤2
2
时,函数y在[1,2]上为增函数,
当t=1时,ymin=b+1;当1<-
b
2
<2,即-4<b<-2时,当t=-
b
2
时,ymin=-
b2
4

当-
b
2
≥2
,即b≤-4时,函数y在[1,2]上是减函数,
当t=2时,ymin=4+2b.
综上所述:φ(x)=
b+1-2≤b≤2
2
-
b2
4
-4<b<-2
4+2bb≤-4

(III)设点P、Q的坐标是(x1,y1),(x2,y2),且0<x1<x2
则点M、N的横坐标为x=
x1+x2
2

C1在点M处的切线斜率为k1=
1
x
|x=
x1+x2
2
=
2
x1+x2

C2在点N处的切线斜率为k2=ax+b|x=
x1+x2
2
=
a(x1+x2)
2
+b

假设C1在点M处的切线与C2在点N处的切线平行,则k1=k2
2
x1+x2
=
a(x1+x2)
2
+b
.则
2(x2-x1)
x1+x2
=
a(
x22
-
x21
)
2
+b(x2-x1)=(
a
2
x22
+bx2)-(
a
2
x21
+bx1)

=y2-y1=lnx2-lnx1=ln
x2
x1

ln
x2
x1
=
2(x2-x1)
x1+x2
=
2(
x2
x1
-1)
1+
x2
x1
u=
x2
x1
>1
,则lnu=
2(u-1)
1+u
,u>1
,(1)
r(u)=lnu-
2(u-1)
1+u
,u>1
,则r′(u)=
1
u
-
4
(u+1)2
=
(u-1)2
u(u+1)2

∵u>1,∴r′(u)>0,
所以r(u)在[1,+∞)上单调递增,
故r(u)>r(1)=0,则lnu>
2(u-1)
u+1
,与(1)矛盾!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案