精英家教网 > 高中数学 > 题目详情

【题目】已知函数g(x)=ex , f(x)= ,f(x)是定义在R上的奇函数.
(1)求a,b的值;
(2)若关于t的方程f(2t2﹣mt)+f(1﹣t2)=0有两个根α、β,且α>0,1<β<2,求实数m的取值范围.

【答案】
(1)解:f(x)是定义在R上的奇函数,

∴f(0)= ,即a=1.又f(﹣1)=﹣f(1),即 ,可得b=e.

所以f(x)=

又f(﹣x)=

所以a=1,b=e成立


(2)解:f(x)= ,易得f(x)在R上单调递减.

方程f(2t2﹣mt)+f(1﹣t2)=0可转化为f(2t2﹣mt)=﹣f(1﹣t2),又函数f(x)是奇函数,则

f(2t2﹣mt)=f(t2﹣1).又函数f(x)在R上单调递减,

所以2t2﹣mt=t2﹣1,即t2﹣mt+1=0.

考虑函数h(t)=t2﹣mt+1,

(i)若α=1或2,则m=2或 ,易得 ,与β∈(1,2)矛盾;

(ii)若0<α<1或α>2,则h(1)h(2)<0,即(2﹣m)(5﹣2m)<0,

(iii)若1<α<2,则只需满足

由以上(i)、(ii)、(iii)可知


【解析】(1)根据奇函数的定义求解;(2)利用奇函数的性质转化为一元二次不等式,借助与一元二次函数的关系进行判断.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线L经过点P(﹣4,﹣3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;

(1)求出异面直线AC'和BD所成角的余弦值;
(2)找出AC'与平面D'DBB'的交点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点.

(1)求证:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 满足f(0)=0.
(1)求a,f(﹣2)的值,判断函数f(x)的奇偶性并说明理由;
(2)判断该函数在R上的单调性(不要求证明),解不等式f(x2+x)<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点相同 为椭圆的左右焦点为椭圆上任意一点面积的最大值为1

1求椭圆的方程

2直线交椭圆两点

i若直线的斜率分别为求证直线过定点并求出该定点的坐标

ii若直线的斜率时直线斜率的等比中项求△面积的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣
(1)求证:函数f(x)在R上为增函数;
(2)当函数f(x)为奇函数时,求函数f(x)在[﹣1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC,点P,A,B,C都在半径为 的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线l1:y=x,l2:y=x+2与圆C:x2+y2﹣2mx﹣2ny=0的四个交点把圆C分成的四条弧长相等,则m=(
A.0或1
B.0或﹣1
C.1或﹣1
D.0

查看答案和解析>>

同步练习册答案