精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

已知=12sin(x+)cosx-3,x∈[o,].

(1)求的最大值、最小值;

(Ⅱ)CD为△ABC的内角平分线,已知AC=max,BC=,CD=2,求∠C.

【答案】( Ⅰ) max =6 , min =3.

( Ⅱ ) C=.

【解析】分析第一问先对函数解析式进行化简,首先应用正弦的和角公式拆,之后应用正余弦的倍角公式降次升角,之后应用辅助角公式化简之后将整体角的取值范围求出,再判断其最值,第二问先将第一问求的结果代入,之后借助于正余弦定理找出对应的量,求得结果.

详解:( Ⅰ ) =6sin ( 2 x + )

在( 0 ,)上单调递增,( )上单调递减

max =6 , min =3

( Ⅱ )在 ΔADC 中,=,在 ΔBDC中,=

∵sin∠ADC=sin∠ BDC , AC=6 , BC =3

∴ AD=2BD 在ΔBCD中, BD2 =17-12cos,

在ΔACD中, AD2=44-24cos=68-48cos

∴cos=,即 C=( Ⅰ) max =6 , min =3.

( Ⅱ ) C=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为推动更多人阅读,联合国教科文组织确定每年的日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了名居民,经统计这人中通过电子阅读与纸质阅读的人数之比为,将这人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示.

(1)求的值及通过电子阅读的居民的平均年龄;

(2)把年龄在第组的居民称为青少年组,年龄在第组的居民称为中老年组,若选出的人中通过纸质阅读的中老年有人,请完成上面列联表,则是否有的把握认为阅读方式与年龄有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式0<ax2+bx+c<1的解集为(0,1),则实数a的取值范围是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)是定义在上的奇函数.

(Ⅰ)求的值

(Ⅱ)求函数的值域

(Ⅲ)当 恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.

的分组

企业数

2

24

53

14

7

1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;

2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+﹣1nan=2n﹣1,则{an}的前60项和为( )

A. 3690 B. 3660 C. 1845 D. 1830

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )

78 16 65 72 08 02 63 14 07 02 43 69 69 38 74

32 04 94 23 49 55 80 20 36 35 48 69 97 28 01

A. 05 B. 09 C. 07 D. 20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,已知抛物线,过点任作一直线与相交于两点,过点轴的平行线与直线相交于点为坐标原点).

(1)证明:动点在定直线上;

(2)的任意一条切线(不含轴)与直线相交于点,与(1)中的定直线相交于点,证明:为定值,并求此定值.

查看答案和解析>>

同步练习册答案