分析:由两向量的坐标表示出两向量的数量积,利用两角和与差的余弦函数公式编写,再利用平面向量的数量积运算法则表示出两向量的数量积,得到两向量夹角的余弦值等于-cos(A+B),由A和B为锐角,得到A+B为钝角,即cos(A+B)的值小于0,进而得到-cos(A+B)大于0,即夹角的余弦值大于0,即可得到两向量的夹角为锐角.
解答:解:设
与
的夹角为α,
∵向量
=(cosA,sinA),
=(-cosB,sinB),
∴
•
=-cosAcosB+sinAsinB
=-cos(A+B),
而
•
=|
|•|
|•cosα
=
•
•cosα=cosα,
又A和B为锐角△ABC的内角,
∴A+B为钝角,即cos(A+B)<0,
∴cosα=-cos(A+B)=cosC>0,
则
与
的夹角为锐角.
故选A
点评:此题考查了两角和与差的余弦函数公式,平面向量的数量积运算法则,诱导公式,以及三角形的内角和定理,熟练掌握公式及法则是解本题的关键.