精英家教网 > 高中数学 > 题目详情

【题目】已知(2x2+x﹣y)n的展开式中各项系数的和为32,则展开式中x5y2的系数为 . (用数字作答)

【答案】120
【解析】解:由题意,(2x2+x﹣y)n的展开式中各项系数的和为32,即2n=32,

∴n=5,

那么(2x2+x﹣y)5=[(2x2+x)﹣y]5

通项公式Tr+1=

展开式中含有x5y2,可知r=2.

那么(2x2+x)3中展开必然有x5

由通项公式,可得

含有x5的项:则t=1,

∴展开式中x5y2的系数为 =120.

故答案为120.

根据(2x2+x﹣y)n的展开式中各项系数的和为32,即2n=32,求出n=5,将(2x2+x﹣y)5=[(x2+x)﹣y]5,利用通项公式,求出x5y2的项,可得其系数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在公差不为0的等差数列{an}中,a22=a3+a6 , 且a3为a1与a11的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(﹣1)n ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sin(π+ωx),2cosωx), =(2 sin( +ωx),cosωx),(ω>0),函数f(x)= ,其图象上相邻的两个最低点之间的距离为π.
(Ⅰ)求函数f(x)的对称中心;
(Ⅱ)在锐角△ABC中,角A、B、C的对边分别为a、b、c,tanB= ,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆 的离心率为 ,直线y=x被椭圆C截得的线段长为
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线与椭圆C交于两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.设直线BD,AM斜率分别为k1 , k2 , 证明存在常数λ使得k1=λk2 , 并求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.

)求的值及样本中男生身高在(单位:)的人数.

)假设用一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.

)在样本中,从身高在(单位:)内的男生中任选两人,求这两人的身高都不低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:

1月11日

1月12日

1月13日

1月14日

1月15日

平均气温x(°C)

9

10

12

11

8

销量y(杯)

23

25

30

26

21

(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程 = x+
(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
(参考公式: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,正确的有__________

①如果与平面共面且那么就是平面的一个法向量

②设实数满足实数满足的充分不必要条件

③已知椭圆与双曲线的焦点重合分别为的离心率

④菱形是圆的内接四边形或是圆的外切四边形.

查看答案和解析>>

同步练习册答案