精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}的前n项和为Sn,且3a3=a6+4若S5<10则a2的取值范围是(-∞,2).

分析 设此等差数列的公差为d,由3a3=a6+4,可得:d=2a2-4.由S5<10,可得$\frac{5({a}_{2}+{a}_{4})}{2}$=$\frac{5(6{a}_{2}-8)}{2}$<10,解得a2范围即可得出.

解答 解:设此等差数列的公差为d,
∵3a3=a6+4,
∴3(a2+d)=a2+4d+4,可得:d=2a2-4,
∵S5<10,$\frac{5({a}_{2}+{a}_{4})}{2}$=$\frac{5(6{a}_{2}-8)}{2}$<10,解得a2<2.
则a2的取值范围是(-∞,2).
故答案为:(-∞,2).

点评 本题考查了等差数列的通项公式及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{1}{{\sqrt{x-2}}}$的定义域为(  )
A.(-∞,2)∪(2,+∞)B.(2,+∞)C.[2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A(-1,-3),B(3,5),点M在直线AB上,且|$\overrightarrow{AM}$|=$\frac{3}{2}$|$\overrightarrow{MB}$|,求$\overrightarrow{OM}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x3+x,若$2+f({log_{\frac{1}{a}}}2)>0$,则实数a的取值范围是(0,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,设角A,B,C所对边分别为a,b,c,已知向量$\overrightarrow{m}$=(b+c,a2+bc),$\overrightarrow{n}$=(b+c,-1),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求角A的大小;
(2)若a=3,求△ABC的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在数列{an}中,a1=2,${a}_{n+1}=\frac{2{a}_{n}}{n+1}-1$,则a3=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线y2=8x的焦点为F,A、B为抛物线上两点,若$\overrightarrow{AF}=3\overrightarrow{FB}$,则△AOB的面积为(  )
A.$\frac{4\sqrt{3}}{3}$B.$\frac{16\sqrt{3}}{3}$C.$\frac{32\sqrt{3}}{3}$D.$\frac{64\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个命题中,正确的是(  )
A.若x>1,则?y∈(-∞,1),xy≠1B.若x=sinθcosθ,则?θ∈(0,π),x≠$\frac{1}{2}$
C.若x>1,则?y∈(-∞,1),xy=1D.若x=sinθcosθ,则?θ∈(0,π),x=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数中,表示同一函数的一组是(  )
A.f(x)=$\frac{1}{x-1}$,g(x)=$\frac{x+1}{{x}^{2}-1}$B.f(x)=|x+1|,g(x)=$\sqrt{{x}^{2}+2x+1}$
C.f(x)=x0,g(x)=1D.f(x)=3x+2(x≥0),g(x)=2+3x

查看答案和解析>>

同步练习册答案