精英家教网 > 高中数学 > 题目详情
2.己知命题p:方程$\frac{{x}^{2}}{4-k}$+$\frac{{y}^{2}}{k-1}$=1表示双曲线;q:不等式x2-(k+1)x+k+1>0对一切x>1的实数恒成立.若“p∨q”为真,“p∧q”为假,求实数k的取值范围.

分析 分别求出p,q为真时的k的范围,结合若“p∨q”为真,“p∧q”为假,通过讨论p,q的真假,判断即可.

解答 解:命题p:方程$\frac{{x}^{2}}{4-k}$+$\frac{{y}^{2}}{k-1}$=1表示双曲线,
∴(4-k)(k-1)<0,解得:k>4或k<1;
命题q:不等式x2-(k+1)x+k+1>0对一切x>1的实数恒成立,
∴△=(k+1)2-4(k+1)<0或$\left\{\begin{array}{l}{\frac{k+1}{2}<1}\\{f(1)=1>0}\end{array}\right.$,
解得:-1<k<3或k<1,
∴k<3,
若“p∨q”为真,“p∧q”为假,
则p,q一真一假,
p真q假时:$\left\{\begin{array}{l}{k>4或k<1}\\{k≥3}\end{array}\right.$,解得:k>4,
p假q真时:$\left\{\begin{array}{l}{1≤k≤4}\\{k<3}\end{array}\right.$,解得:1≤k<3,
综上,k>4或1≤k<3.

点评 本题考查了复合命题的判断,考查二次函数的性质以及双曲线问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.央视记者柴静的《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出表中数据.
x4578
y2356
(1)请画出表中数据的散点图;(画在答题卷上的坐标纸上)
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归直线方程$\hat y=\hat bx+\hat a$;
(3)试根据(2)求出线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.
(相关公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow a$=(sinθ,cosθ),$\overrightarrow b$=(2,-1),若$\overrightarrow a⊥\overrightarrow b$,则cos2θ+sin2θ=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若x、y满足约束条件$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y≥2\end{array}\right.$,则z=2x-y的取值范围是[-2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a3+1,a4成等差数列,令bn=log2an
(1)求数列{an}的通项公式;
(2)令${c_n}=\frac{b_n}{a_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知4sin2x-6sinx-cos2x+3cosx=0,求-$\frac{co{s}^{2}x-si{n}^{2}x}{(1-co{s}^{2}x)(1-ta{n}^{2}x)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在数列{an}中,
(1)若a1=2,an+1=an+n+1,则通项an=$\frac{{n}^{2}+n}{2}$+1
(2)若a1=1,Sn=$\frac{n+2}{3}$an,则通项an=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若BC=2,∠B=60°,△ABC的面积为3,则AC=$2\sqrt{4-\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.F1,F2分别为二次曲线2x2+5y2=30的左,右焦点,动点P满足|PF1|-|PF2|=4,则P点轨迹方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2).

查看答案和解析>>

同步练习册答案