精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ln(4-x2),则f(x)的定义域为(-2,2),当x=0时,f(x)有最大值ln4.

分析 根据真数大于0,求出函数的定义域,再根据函数的性质求出函数的最大值点和最大值.

解答 解:由4-x2>0得:x∈(-2,2),
即函数f(x)的定义域为(-2,2);
当x=0时,4-x2取最大值4,
函数f(x)=ln(4-x2)取最大值ln4,
故答案为:(-2,2),0,ln4;

点评 本题考查了函数的定义域的定义域,函数的最值,熟练掌握对数函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,若函数y=f(x)的图象如图所示,则它的解析式为f(x)=$\left\{\begin{array}{l}{-x,x<0}\\{2x,0≤x≤1}\\{2,x>1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y,实数,a>1,b>1,且ax=by=2,
(1)若ab=4,则$\frac{1}{x}$+$\frac{1}{y}$=2
(2)a2+b=4,则 $\frac{2}{x}$+$\frac{1}{y}$的最大值2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,四边形ABCD内接于圆,AB=AC,直线MN切圆于点C,BD∥MN交AC于点E.若AB=6,BC=4,则AE的长为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a=$\int_0^1{({3{x^2}+2x})dx}$,则二项式${({1-\frac{a}{x}})^5}$的展开式中x-2的系数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,点B(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),点A时单位圆与x轴正半轴的交点.设点P为单位圆上的动点,点Q满足$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$,∠AOP=2θ($\frac{π}{6}$≤θ<$\frac{π}{2}$),f(θ)=$\overrightarrow{OB}$•$\overrightarrow{OQ}$,求f(θ)的取值范围,当$\overrightarrow{OB}$⊥$\overrightarrow{OQ}$时,求四边形OAQP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=x3-8x,则$\stackrel{lim}{△x→0}$$\frac{f(2+△x)-f(2)}{△x}$=4,$\underset{lim}{△x→0}$$\frac{f(2-△x)-f(2)}{△x}$=-4,$\lim_{x→2}$$\frac{f(x)-f(2)}{x-2}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-e-x-2x,x∈R,其中e是自然对数的底数.
(1)判断函数f(x)的奇偶性;
(2)设f′(x)为f(x)的导函数,若函数g(x)=f′(2x)-2af′(x)+2a2-4a-4,x∈R存在两个零点,求实数a的取值范围;
(3)设t>1,求证:函数h(x)=f(ex)+f(-x-t),x>0有唯一零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若Rt△ABC的斜边的两端点A,B的坐标分别为(-3,0)和(7,0),则直角顶点C的轨迹方程为(x-2)2+y2=25(y≠0).

查看答案和解析>>

同步练习册答案