精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2sinωx(0<ω<1)在[0,$\frac{π}{2}$]上的最大值为$\sqrt{2}$,当把f(x)的图象上的所有点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到图象对应的函数g(x)的图象关于直线x=$\frac{7π}{6}$对称.
(1)求函数g(x)的解析式:
(2)在△ABC中.一个内角A,B,C所对的边分别是a,b,c.已知g(x)在y轴右侧的第一个零点为C,若c=4,求△ABC的面积S的最大值.

分析 (1)由题意可得2sin($\frac{π}{2}$ω)=$\sqrt{2}$,解得ω,利用平移变换规律可得g(x)=2sin($\frac{1}{2}$x-$\frac{1}{2}$φ),利用正弦函数的对称性可得$\frac{1}{2}$($\frac{7π}{6}$-φ)=kπ+$\frac{π}{2}$,k∈Z,结合范围0<φ<$\frac{π}{2}$,可求φ,即可得解函数g(x)的解析式.
(2)由题意可得2sin($\frac{1}{2}$C-$\frac{π}{12}$)=0,解得$\frac{1}{2}$C-$\frac{π}{12}$=kπ,k∈Z,由题意可解得C,由余弦定理可得ab≤$\frac{16}{2-\sqrt{3}}$,利用三角形的面积公式即可得解.

解答 解:(1)∵函数f(x)=2sinωx(0<ω<1)在[0,$\frac{π}{2}$]上的最大值为$\sqrt{2}$,
∴2sin($\frac{π}{2}$ω)=$\sqrt{2}$,解得ω=$\frac{1}{2}$,
把f(x)的图象上所有的点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,
得到的函数g(x)=2sin[$\frac{1}{2}$(x-φ)]=2sin($\frac{1}{2}$x-$\frac{1}{2}$φ),
∵函数g(x)的图象关于直线x=$\frac{7π}{6}$对称,
∴$\frac{1}{2}$($\frac{7π}{6}$-φ)=kπ+$\frac{π}{2}$,k∈Z,解得:φ=$\frac{π}{6}$-2kπ,k∈Z,
∴由0<φ<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$.
∴函数g(x)的解析式为:g(x)=2sin[$\frac{1}{2}$(x-$\frac{π}{6}$)]=2sin($\frac{1}{2}$x-$\frac{π}{12}$).
(2)∵函数g(x)在y轴右侧的第一个零点恰为C,
∴由2sin($\frac{1}{2}$C-$\frac{π}{12}$)=0,解得$\frac{1}{2}$C-$\frac{π}{12}$=kπ,k∈Z,可得:C=2kπ+$\frac{π}{6}$,k∈Z,令k=0,可得C=$\frac{π}{6}$.
∵c=4,
∴由余弦定理可得:16=a2+b2-2abcosC=a2+b2-$\sqrt{3}$ab≥2ab-$\sqrt{3}$ab,解得:ab≤$\frac{16}{2-\sqrt{3}}$,
∴S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×$\frac{16}{2-\sqrt{3}}$×$\frac{1}{2}$=8$+4\sqrt{3}$.
故△ABC的面积S的最大值为8$+4\sqrt{3}$.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,余弦定理,三角形面积公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设f(x)=x2+bx+c(b,c∈R),函数f(x)在区间(2,3]上有最大值1.
(Ⅰ)若c=4,求b的值;
(Ⅱ)当|x|>2时,f(x)>0恒成立,求b+$\frac{1}{c}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将四封不同的信装进写好地址的四个信封,则恰好只有一封信装错信封的概率是0;恰好有两封信装错信封的概率是$\frac{1}{4}$;(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα+sin(α+β)+cos(α+β)=$\sqrt{3}$,β∈[$\frac{π}{4}$,π],求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a∈R,函数f(x)=$\frac{a•{2}^{x}-{a}^{-2}}{{2}^{x}+1}$为奇函数.
(1)实数a的值;
(2)判断并证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某种型号的电子管的寿命X(以小时计)具有以下概率密度;
f(x)=$\left\{\begin{array}{l}{1000/{x}^{2}}&{x>1000}\\{0}&{其它}\end{array}\right.$,现有一大批此种管子(设各电子管损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标,设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比,试求X的分布函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线x=$\frac{2π}{3}$和x=$\frac{7π}{6}$是函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)的两条相邻的对称轴,且函数f(x)在区间($\frac{π}{6}$,$\frac{2π}{3}$)上单调递减,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2(x-a),其中a为正实数.
(1)当x∈(0,1)时函数f(x)的图象上任意一点P处的切线斜率为k,若k≥-1,求a的范围;
(2)若a=-2,求曲线过点Q(-1,f(-1))的切线方程.

查看答案和解析>>

同步练习册答案