【题目】已知函数,其中,给出四个结论:
①函数是最小正周期为的奇函数;
②函数的图像的一条对称轴是;
③函数图像的一个对称中心是;
④函数的递增区间为.则正确结论的个数为( )
A. 4个 B. 3个 C. 2个 D. 1个
【答案】B
【解析】解答:
∵
=cos2xcossin2xsincos2x=cos2xsin2xcos2x=sin2xcos2x=sin(2x+)
∴T=π,即函数f(x)的最小正周期为π,
但f(0)=sin=≠0,函数f(x)不是奇函数。命题①错误;
∵f()=sin(2×+)=sin=1,
∴函数f(x)图象的一条对称轴是x=.命题②正确;
∵f()=sin(2×+)=sinπ=0,
∴函数f(x)图象的一个对称中心为(,0).命题③正确;
由+2kπ2x++2kπ,得:
+kπx+kπ,k∈Z.
∴函数f(x)的递增区间为[kπ+,kπ+],k∈Z.命题④正确。
∴正确结论的个数是3个。
故选:B.
科目:高中数学 来源: 题型:
【题目】某知名品牌汽车深受消费者喜爱,但价格昂贵。某汽车经销商推出三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图。已知从三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元,2万元,3万元。以这100 位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率。
(Ⅰ)求采用上述分期付款方式销售此品牌汽车1辆,该汽车经销商从中所获得的利润不大于2万元的概率;
(Ⅱ)求采用上述分期付款方式销售此品牌汽车1辆,该汽车经销商从中所获得的利润的平均值;
(Ⅲ)根据某税收规定,该汽车经销商每月(按30天计)上交税收的标准如下表:
若该经销商按上述分期付款方式每天平均销售此品牌汽车3辆,估计其月纯收入(纯收入=总利润-上交税款)的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了名女性或名男性,根据调研结果得到如图所示的等高条形图.
(1)完成下列 列联表:
喜欢旅游 | 不喜欢旅游 | 估计 | |
女性 | |||
男性 | |||
合计 |
(2)能否在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.
附:
参考公式:
,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中在校学生2 000人,高一年级与高二年级人数相同并且都比高三年级多1人.为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:
年级 项目 | 高一年级 | 高二年级 | 高三年级 |
跑步 | a | b | c |
跳绳 | x | y | z |
其中a∶b∶c=2∶3∶5,全校参与跳绳的人数占总人数的. 为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)
无意愿 | 有意愿 | 总计 | |
男 | 40 | ||
女 | 5 | ||
总计 | 25 | 80 |
(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附参考公式及数据: ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求的普通方程和的倾斜角;
(2)设点, 和交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面为矩形,D为的中点,AC⊥平面BCC1B1.
(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线与交与, ,求, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com