偶函数在上为增函数,若不等式对恒成立,则实数a的取值范围为
A. | B. | C. | D. |
B
解析试题分析:根据偶函数图象关于原点对称,得f(x)在[0,+∞)上单调增且在(-∞,0]上是单调减函,由此结合2+是正数,将原不等式转化为|ax-1|<2+x2恒成立,去绝对值再用一元二次不等式恒成立的方法进行处理,即得实数a的取值范围.解:∵f(x)是偶函数,图象关于y轴对称,∴f(x)在[0,+∞)上的单调性与的单调性相反,由此可得f(x)在(-∞,0]上是减函数,∴不等式f(ax-1)<f(2+)恒成立,等价于|ax-1|<2+x2恒成立,即不等式-2-<ax-1<2+恒成立,得+ax+1>0
, x2-ax+3>0的解集为R, ∴结合一元二次方程根的判别式,得:-4<0且(-a)2-12<0,解之得-2<a<2,故选:B
考点:偶函数的单调性
点评:本题给出偶函数的单调性,叫我们讨论关于x的不等式恒成立的问题,着重考查了函数的单调性与奇偶性、一元二次不等式解法等知识,属于基础题
科目:高中数学 来源: 题型:单选题
已知f(x)是定义在(0,+)上的非负可导函数,且满足。对任意正数a、b,若a<b,则必有( )
A.af(b)≤bf(a) | B.bf(a)≤af(b) |
C.af(a)≤f(b) | D. bf(b)≤f(a) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com