精英家教网 > 高中数学 > 题目详情

【题目】已知函数(为常数),曲线在与轴的交点A处的切线与轴平行.

(1)的值及函数的单调区间;

(2)若存在不相等的实数使成立试比较的大小.

【答案】(1)a=2,在区间(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.(2)x1x2<2ln 2

【解析】

(1)由导数的几何意义得到,求出a的值,再求函数的单调区间.(2) 令g(x)= (x)-(2ln 2-x)=ex-4x+4ln 2(x≥ln 2),

利用导数得到函数g(x)(ln 2,+∞)上单调递增,即(x)>(2ln 2-x),不妨设x1<ln 2<x2所以(x2)>(2ln 2-x2),再证明x1x2<2ln 2.

(1)

.且f(x)与y轴交于A(0.0)

所以,所以a=2

所以,

>0,得x>ln 2.

所以函数在区间(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.

(2)证明:设x>ln 2,所以2ln 2-x<ln 2,

(2ln 2-x)=e(2ln 2x)-2(2ln 2-x)-1

+2x-4ln 2-1.

g(x)= (x)-(2ln 2-x)=ex-4x+4ln 2(x≥ln 2),

所以g′(x)=ex+4ex-4≥0,

当且仅当x=ln 2时,等号成立,

所以g(x)=(x)-(2ln 2-x)(ln 2,+∞)上单调递增.

g(ln 2)=0,所以当x>ln 2时,g(x)=(x)-(2ln 2-x)>g(ln 2)=0,

(x)>(2ln 2-x),不妨设x1<ln 2<x2所以(x2)>(2ln 2-x2),

又因为(x1)=(x2),所以(x1)>(2ln 2-x2),

由于x2>ln 2,所以2ln 2-x2<ln 2,

因为x1<ln 2,由(1)知函数y(x)在区间(-∞,ln 2)上单调递减,

所以x1<2ln 2-x2

x1x2<2ln 2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面为等边三角形,且垂直于底面分别是的中点.

1)证明:平面平面

2)已知点在棱上且,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.

(1)若当时,,求此时的值;

(2)设,且

(i)试将表示为的函数,并求出的取值范围;

(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于试求两处喷泉间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线,以原点为极点、轴的正半轴为极轴,建立极坐标系.

1)求曲线的极坐标方程和曲线的直角坐标方程;

2)若直线与曲线交于两点,与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

直角坐标系中曲线的参数方程为参数),在以坐标原点为极点, 轴正半轴为极轴的极坐标系中, 点的极坐标,在平面直角坐标系中,直线经过点,倾斜角为

(1)写出曲线的直角坐标方程和直线的参数方程;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,判断上的单调性并加以证明;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,曲线的参数方程为: 为参数, ),将曲线经过伸缩变换: 得到曲线.

(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;

(2)若直线为参数)与相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想

甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取

同学乙猜:刘云被清华大学录取,张熙被北京大学录取

同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取

同学丁猜:刘云被清华大学录取,张熙被武汉大学录取

结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对

那么曾玉、刘云、李梦、张熙四人被录取的大小可能是(

A.北京大学、清华大学、复旦大学、武汉大学

B.武汉大学、清华大学、复旦大学、北京大学

C.清华大学、北京大学、武汉大学 、复旦大学

D.武汉大学、复旦大学、清华大学、北京大学

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线上的相异两点,且.

1)若直线,求的值;

2)若直线的垂直平分线交轴与点,求面积的最大值.

查看答案和解析>>

同步练习册答案