精英家教网 > 高中数学 > 题目详情

【题目】设函数,函数

1)求函数的值域;

2)若对于任意的,总存在,使得成立,求实数的取值范围.

【答案】(1);(2

【解析】试题分析:

1)根据三种情况分别求出的取值范围,最后可得函数的值域为。(2由(1)知,函数的值域。由函数上单调递增,可得函数的值域“对于任意的,总存在,使得成立”等价于并由此得到,解得即为所求

试题解析:

(1)①当 则函数0,1上单调递增,在上单调递减,所以

②当

③当 则函数上单调递减,在上单调递增,所以

综上可得

所以函数的值域为

2)由(1)知,函数的值域

又函数上单调递增,

,即

∴函数的值域

由题意得“对于任意的,总存在,使得成立”等价于

解得

∴实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 分别是其左、右焦点,以线段为直径的圆与椭圆有且仅有两个交点.

(1)求椭圆的方程;

(2)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,点横坐标的取值范围是,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】423日是世界读书日,惠州市某中学在此期间开展了一系列的读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为读书迷,低于60分钟的学生称为非读书迷

)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为读书迷与性别有关?

)将频率视为概率,现在从该校大量学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中读书迷的人数为,若每次抽取的结果是相互独立的,求的分布列、数学期望和方差

附:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:

(1)求的值及频率分布直方图中的值;

(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?

(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌汽车的店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付款的频率为0.4;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.

付款方式

分3期

分6期

分9期

分12期

频数

20

20

(1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件:“至多有1位采用分6期付款“的概率

(2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(Ⅱ)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面,底面为直角梯形, ,且为线段上的一动点.

(Ⅰ)若为线段的中点,求证: 平面

(Ⅱ)当直线与平面所成角小于,求长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).

(1)求关于的函数关系式;

(2)若,求当下潜速度取什么值时,总用氧量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线的参数方程为为参数).

(1)直线且与曲线相切,求直线的极坐标方程;

(2)点与点关于轴对称,求曲线上的点到点的距离的取值范围.

查看答案和解析>>

同步练习册答案