精英家教网 > 高中数学 > 题目详情
已知,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为( )
A.
B.
C.
D.
【答案】分析:根据题意,设P(acosβ,bsinβ),M(acosα,bsinα),因为M、N是椭圆上关于原点对称的两点,则N(-acosα,-bsinα),进而由斜率公式表示出k1、k2的值,计算可得k1•k2的值,由基本不等式,可得|k1|+|k2|的最小值为2,结合题意,k1|+|k2|的最小值为1,得到=1,计算可得答案.
解答:解:设P(acosβ,bsinβ),M(acosα,bsinα),则N(-acosα,-bsinα),
可得


故选D.
点评:本题考查椭圆的有关性质,涉及三角函数的运算与不等式的有关知识,有一定的难度,注意加强训练.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第二次月考数学试卷(文科)(解析版) 题型:选择题

已知,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省九江市都昌二中高三(上)周考数学试卷(6)(文科)(解析版) 题型:选择题

已知,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第二次月考数学试卷(文科)(解析版) 题型:选择题

已知,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011年山东省济宁一中高三一轮复习质量验收数学试卷(理科)(解析版) 题型:选择题

已知,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2010年四川省遂宁市蓬溪县蓬南中学高考最后冲刺数学试卷(一)(解析版) 题型:选择题

已知,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案