精英家教网 > 高中数学 > 题目详情

【题目】如图△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,则(

A.AB+BC有最大值
B.AB+BC有最小值
C.AE+DC有最大值
D.AE+DC有最小值

【答案】D
【解析】解:取AC的中点O,连接OB,OE,则OB⊥AC,
∵DC⊥平面ABC,∴DC⊥OB,
∵DC∩AC=C,
∴OB⊥平面ADC,
∴OB⊥AD,
∵BE⊥AD,OB∩BE=B,
∴AD⊥平面BOE,
∴AD⊥OE,
∴∠AEO=∠CAD,
=
∴AE=
∴AE+CD=CD+ ≥2 ,当且仅当CD= 时,AE+DC有最小值,
故选D.

【考点精析】本题主要考查了直线与平面垂直的判定的相关知识点,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

某电视台播放甲乙两套连续剧每次播放连续剧时需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

连续剧播放时长(分钟)

广告播放时长分钟

收视人次

70

5

60

60

5

25

已知电视台每周安排甲乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用表示每周计划播出的甲乙两套连续剧的次数.

(I)用列出满足题目条件的数学关系式并画出相应的平面区域

(II)问电视台每周播出甲乙两套连续剧各多少次才能使收视人次最多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出四个命题的表述: ①直线(3+m)x+4y﹣3+3m=0(m∈R)恒过定点(﹣3,3);
②线段AB的端点B的坐标是(3,4),A在圆x2+y2=4上运动,则线段AB的中点M的轨迹方程 +(y﹣2)2=1
③已知M={(x,y)|y= },N={(x,y)|y=x+b},若M∩N≠,则b∈[﹣ ];
④已知圆C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)与x轴相交,与y轴相离,则直线ax+by+c=0与直线x+y+1=0的交点在第二象限.
其中表述正确的是( (填上所有正确结论对应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足an+log3n=log3bn , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等比数列,{bn}是等差数列,且a1=b1=1,a1+a2=b4 , b1+b2=a2
(1)求{an}与{bn}的通项公式;
(2)记数列{an+bn}的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且
(1)求角B的大小;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调增区间;

2)设函数 若函数的最小值是的值;

3若函数 的定义域都是对于函数的图象上的任意一点在函数的图象上都存在一点,使得其中是自然对数的底数, 为坐标原点的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,如果执行如图所示的程序框图,输入n=6,m=4,那么输出的p=

查看答案和解析>>

同步练习册答案