精英家教网 > 高中数学 > 题目详情
给出下列四个命题,
①若线性相关系r的绝对值越接近于l,则表明两个随机变量线性相关性越强;
②在△ABC中,若>o,则△ABC为钝角三角形;
③若k≠0.,则直线x+y=k与x-y=1/k的交点在双曲线x2-y2=l上;
④设m、n为直线.α、β为平面,若m∥α,n∥β,且m∥n.则α∥β
其中正确命题的序号是   
【答案】分析:根据相关系数的定义,可判断①正确;对于②利用平面向量的数量积运算法则化简已知的不等式,得到两向量的夹角为锐角,从而得到三角形的内角为钝角,即可得到三角形为钝角三角形;利用将两直线方程相乘得到的新的方程与双曲线x2-y2=l的关系,可判断③的正误;而根据平面与平面平行的判定,我们可判断④的真假.
解答:解:①中,由相关系数的定义可知:
性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强,故①正确;
②中:∵,即||•||cosθ>0,
∴cosθ>0,且θ∈(0,π),
所以两个向量的夹角θ为锐角,
又两个向量的夹角θ为三角形的内角B的补角,
所以B为钝角,所以△ABC为钝角三角形,②正确;
对于③,将直线x+y=k与x-y=1/k相乘得x2-y2=l,说明直线x+y=k与x-y=1/k的交点在双曲线x2-y2=l上,③正确;
④设m、n为直线.α、β为平面,若m∥α,n∥β,且m∥n.则α与β可能相交,也可能平行,故④错.
故答案:①②③.
点评:本小题主要考查相关系数、命题的真假判断与应用、直线与圆锥曲线的关系等基础知识,考查运算求解能力,考查转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案