精英家教网 > 高中数学 > 题目详情

在长方体ABCD-A1B1C1D1中,AB=2,BC=CC1=1,E为棱C1D1的中点.
(Ⅰ)求证面ADE⊥面BCE;
(Ⅱ)求三棱锥A1-ADE的体积.

解:(1)∵E为棱C1D1的中点,
∴D1D=D1E=1,又∵∠DD1E=90°,
∴∠D1ED=45°,同理∠C1EC=45°,∴∠DEC=90°.即DE⊥EC
∵BC⊥面DC1
又∵DE?面DC1,∴BC⊥DE.
∵BC∩CE=C,∴DE⊥面BCE.
∵DE?面ADE,∴面ADE⊥面BCE
(2)三棱锥A1-ADE可以看做以面AA1D为底,D1E为高的三棱锥,

分析:(1)先在矩形DCC1D1中,证明DE⊥EC,在利用长方体的性质,证明DE⊥BC,从而利用线面垂直的判定定理证明DE⊥面BCE,最后利用面面垂直的判定定理证明结论即可;
(2)先将三棱锥看做以面AA1D为底,D1E为高的三棱锥,再利用棱锥体积计算公式计算其体积即可
点评:本题考查了长方体中的线面关系,线面垂直的判定定理,面面垂直的判定定理,三棱锥体积的计算公式及计算方法技巧,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案