精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=-,若xRfx)满足f-x=-fx).

1)求实数a的值;

2)判断函数fx)(xR)的单调性,并说明理由;

3)若对任意的tR,不等式ft2-4t+f-k)<0恒成立,求k的取值范围.

【答案】(1)1;(2)

【解析】

(1)根据f(-x)=-f(x)代入求得a的值; (2)f(x)是定义域R上的单调减函数,利用定义证明即可; (3)根据题意把不等式化为t2-4t>k,求出f(t)=t2-4t的最小值,即可得出k的取值范围.

)函数fx=-xR,且f-x=-fx),
-=-+
a=+=+=1
fx=-是定义域R上的单调减函数,证明如下:
任取x1x2R,且x1x2
fx1-fx2=---=-=
由(+1)(+1)>0,当x1x2时,
-0fx1)>fx2),
fx)是定义域R上的单调减函数;
)对任意的tR,不等式ft2-4t+f-k)<0恒成立,
ft2-4t)<-f-k=fk),
根据fx)是定义域R上的单调减函数,得t2-4tk
ft=t2-4ttR,则ft=t-22-4≥-4
k的取值范围是k-4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设O是坐标原点,椭圆C:x2+3y2=6的左右焦点分别为F1 , F2 , 且P,Q是椭圆C上不同的两点, (Ⅰ)若直线PQ过椭圆C的右焦点F2 , 且倾斜角为30°,求证:|F1P|、|PQ|、|QF1|成等差数列;
(Ⅱ)若P,Q两点使得直线OP,PQ,QO的斜率均存在.且成等比数列.求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,底面ABCD,点E在棱PB上.

求证:平面平面PDB

,且EPB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若对任意的m,,都有

,求a的取值范围.

若不等式对任意都恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD-A1B1C1D1中,求证:

1AB∥平面A1B1C

2)平面ABB1A1⊥平面A1BC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ax2-4ax+1+ba0)的定义域为[23],值域为[14];设gx=

1)求ab的值;

2)若不等式g2x-k2x≥0在x[12]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若用“五点法”在给定的坐标系中,画出函数[0,π]上的图象.

(2)若偶函数,求

(3)在(2)的前提下,将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标变为原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣2bx+a(a,b∈R)
(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;
(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有8名马拉松比赛志愿者,其中志愿者通晓日语,通晓俄语,通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.

列出基本事件;

被选中的概率;

不全被选中的概率.

查看答案和解析>>

同步练习册答案