精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|x-3|-|x+1|,x∈R.

(1)解不等式f(x)<-1;

(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.

【答案】见解析

【解析】(1)函数f(x)=|x-3|-|x+1|

故由不等式f(x)<-1可得,x>3或

解得x>.

(2)函数g(x)≤f(x)在x∈[-2,2]上恒成立,

即|x+a|-4≤|x-3|-|x+1|在x∈[-2,2]上恒成立,

在同一个坐标系中画出函数f(x)和g(x)的图象,如图所示.

故当x∈[-2,2]时,若0≤-a≤4,则函数g(x)的图象在函数f(x)的图象的下方,g(x)≤f(x)在x∈[-2,2]上恒成立,

求得-4≤a≤0,故所求的实数a的取值范围为[-4,0].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面的菱形, 的中点.

(1)求证:

(2)求点到平面 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上.

(1)求r的值;

(2)当b=2时,记bn=2(log2an+1)(n∈N*),证明:对任意的n∈N*,不等式··…·成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)恒成立,求实数的取值范围;

(Ⅲ)求整数的值,使函数在区间上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面平面,且四边形为矩形,四边形为直角梯形, .

1)求证: 平面

2)求直线与平面所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上是增函数,求实数的取值范围;

2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=.

(1)若△ABC的面积等于,求a,b;

(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出四个命题

1若sin2A=sin2B,则ABC为等腰三角形;

2若sinA=cosB,则ABC为直角三角形;

3若sin2A+sin2B+sin2C<2,则ABC为钝角三角形;

4若cosABcosBCcosCA=1,则ABC为正三角形

以上正确命题的是_______

查看答案和解析>>

同步练习册答案