精英家教网 > 高中数学 > 题目详情

【题目】若函数 有两个极值点,其中 ,且,则方程 的实根个数为________________

【答案】5

【解析】

由函数f(x)=﹣lnx+ax2+bx﹣a﹣2b有两个极值点x1,x2,可得2ax2+bx﹣1=0有两个不相等的正根,必有△=b2+8a>0.而方程2a(f(x))2+bf(x)﹣1=0的△1=△>0,可知此方程有两解且f(x)=x1x2.再分别讨论利用平移变换即可解出方程f(x)=x1f(x)=x2解的个数.

∵函数f(x)=﹣lnx+ax2+bx﹣a﹣2b有两个极值点x1,x2

∴f′(x)=﹣+2ax+b=

即为2ax2+bx﹣1=0有两个不相等的正根,

∴△=b2+8a>0.解得x=

∵x1<x2,﹣,b>0,

∴x1=,x2=

而方程2a(f(x))2+bf(x)﹣1=0的△1=△>0,

∴此方程有两解且f(x)=x1x2

即有0<x1<x2,:∵x1,x2>0x1x2=﹣>1

∴x2>1,∵f(1)=﹣b<0∴f(x1)<0,

f(x2)>0.

①根据f′(x)画出f(x)的简图,

∵f(x2)=x2,由图象可知方程f(x)=x2有两解,方程f(x)=x1有三解.

综上①②可知:方程f(x)=x1f(x)=x2共有5个实数解.

即关于x的方程2a(f(x))2+bf(x)﹣1=0的共有5不同实根.

故答案为:5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(1)证明PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2﹣bx﹣1>0的解集是 ,则不等式x2﹣bx﹣a≥0的解集是( )
A.{x|2<x<3}
B.{x|x≤2或x≥3}
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱柱ABCD﹣A1B1C1D1的底面ABCD为正方形,AA1⊥AC,M、N分别为棱AA1、CC1的中点.

(1)求证:直线MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取线段C1D1的中点Q,求二面角Q﹣MD﹣N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3-3ax+b(a≠0).

(1)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;

(2)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的镀锌铁皮材料ABCD,上沿DC为圆弧,其圆心为A,圆半径为2米,AD⊥AB,BC⊥AB,且BC=1米。现要用这块材料裁一个矩形PEAF(其中P在圆弧DC上、E在线段AB上,F在线段AD上)做圆柱的侧面,若以PE为母线,问如何裁剪可使圆柱的体积最大?其最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:

测试指标

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

芯片甲

8

12

40

32

8

芯片乙

7

18

40

29

6


(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件芯片乙所获得的利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点F1(﹣c,0),F2(c,0)分别是椭圆C: =1(a>1)的左、右焦点,P为椭圆C上任意一点,且 的最小值为0.

(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 (λ∈R),且 =﹣4,则λ的值为

查看答案和解析>>

同步练习册答案