精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=|x-1|+|2x+2|-5.解不等式f(x)≥0.

分析 把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.

解答 解:不等式f(x)≥0,即|x-1|+|2x+2|≥5,即$\left\{\begin{array}{l}{x<-1}\\{1-x-(2x+2)≥5}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{-1≤x≤1}\\{(1-x)+(2x+2)≥5}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>1}\\{x-1+2x+2≥5}\end{array}\right.$③.
解①求得x≤-2,解②求得x∈∅,解③求得x≥$\frac{4}{3}$.
综上可得,不等式的解集为{x|x≤-2,或x≥$\frac{4}{3}$}.

点评 本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知x,y∈R,则“xy≤1”是“x2+y2≤1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=|lg$\sqrt{x}$|+|lg2$\sqrt{x}$|.
(1)若f(x)=lg g(x),求g(x)并作图;
(2)求f(x)的最小值;
(3)求方程f(x)=$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知sinB=$\frac{\sqrt{15}}{4}$,面积S△ABC=$\frac{\sqrt{15}}{4}$a2
(1)求$\frac{c}{a}$的值;
(2)若b=2,求边a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC中,角A,B,C的对边分别为a,b,c,A为锐角,且b=2$\sqrt{3}$,c=5,b=2asinB,求角A的大小和a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式:|x+7|-|x-2|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.$\left\{\begin{array}{l}{x≥0}\\{x+2y≥4}\\{2x+y≤4}\end{array}\right.$所表示的平面区域被直线y=kx+2分成的两部分的面积比为1:1,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={(x,y)|y=2x,x∈R},B={(x,y)|y=x2,x∈(0,+∞)},则A∩B={(2,4),(4,16)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{\sqrt{x},x>0}\end{array}\right.$,若f(x0)>1的取值范围是(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-2)∪(0,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步练习册答案