【题目】如图,在三棱锥中,平面平面,为等边三角形,,且,O,M分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)设是线段上一点,满足平面平面,试说明点的位置;
(Ⅲ)求三棱锥的体积.
【答案】(Ⅰ)详见解析;(Ⅱ)中点;(Ⅲ).
【解析】
试题(Ⅰ)根据线面平行的判定定理,因为O,M分别为,的中点,所以,即可证明平面;
(Ⅱ)根据面面平行的性质定理,两个平行平面被第三个平面所截,则交线平行,根据已知平面平面,与平面交于,所以,则能推出点的位置.
(Ⅲ)由条件平面平面,为等边三角形,所以,再根据所给的数据求面积和高,即为体积.
试题解析:(Ⅰ)证明:因为O,M分别为,的中点,
所以.因为平面,平面,所以平面.
(Ⅱ)解:连结ON,MN.因为平面平面,
且平面平面,平面平面,所以.
因为M为的中点,所以N为的中点.
(Ⅲ)解:因为,且,且O为的中点,
所以,.
因为平面平面,平面平面,平面,
所以平面,可知三棱锥的体积.
其中,,,则.
科目:高中数学 来源: 题型:
【题目】2018年“双十一”全网销售额达3143.25亿元,相当于全国人均消费225元,同比增长23.8%,监测参与“双十一”狂欢大促销的22家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校1000名大一学生中采用男女分层抽样,分别随机调查了若干个男生和60个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:
(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).
(2)若网购为全国人均消费的三倍以上称为“剁手党”估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足200元的同学中随机抽取2人发放纪念品,则2人都是女生的概率为多少?
(3)用频率估计概率,从全市所有高校大一学生中随机调查5人,求其中“剁手党”人数的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且a+b+c=8.
(1)若a=2,b=,求cosC的值;
(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面积S=sinC,求a和b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个圆经过坐标原点和点(2,0),且圆心C在直线y=2x上.
(1)求圆C的方程;
(2)过点P(-2,2)作圆C的切线PA和PB,求直线PA和PB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位安排7位员工对一周的7个夜晚值班,每位员工值一个夜班且不重复值班,其中员工甲必须安排在星期一或星期二值班,员工乙不能安排在星期二值班,员工丙必须安排在星期五值班,则这个单位安排夜晚值班的方案共有( )
A. 96种B. 144种C. 200种D. 216种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十一”期间,某淘宝店主对其商品的上架时间(小时)和销售量(件)的关系作了统计,得到了如下数据并研究.
上架时间 | 2 | 4 | 6 | 8 | 10 | 12 |
销售量 | 64 | 138 | 205 | 285 | 360 | 430 |
(1)求表中销售量的平均数和中位数;
(2)① 作出散点图,并判断变量与是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程;
②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.
附:线性回归方程中, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com