精英家教网 > 高中数学 > 题目详情

某种型号汽车的四个轮胎半径相同,均为R=40cm,该车的底盘与轮胎中心在同一水平面上.该车的涉水安全要求是:水面不能超过它的底盘高度.如图所示:某处有一“坑形”地面,其中坑ABC形成顶角为120°的等腰三角形,且AB=BC=60cm,如果地面上有h(cm)(h<40)高的积水(此时坑内全是水,其它因素忽略不计).
(1)当轮胎与AB、BC同时接触时,求证:此轮胎露在水面外的高度(从轮胎最上部到水面的距离)为d=10+数学公式-h;
(2)假定该汽车能顺利通过这个坑(指汽车在过此坑时,符合涉水安全要求),求h的最大值.(精确到1cm).

解:(1)当轮胎与AB、BC同时接触时,设轮胎与AB边的切点为T,轮胎中心为O,则|OT|=40,
由∠ABC=120°,知∠OBT=60°,…..(2分)
故|OB|=..…..(4分)
所以,从B点到轮胎最上部的距离为+40,…..(6分)
此轮胎露在水面外的高度为d=+40-(60cos60°+h)=+10-h,得证.…..(8分)
(2)只要d≥40,…..(12分)
+10-h≥4040,解得h≤16cm,
所以h的最大值为16cm.…..(14分)
分析:(1)设轮胎与AB边的切点为T,轮胎中心为O,则|OT|=40,由∠ABC=120°,知∠OBT=60°,可得OB|=,由此求得从B点到轮胎最上部的距离.
(2)由题意可得只要d≥40,即 +10-h≥4040,由此求得h的最大值.
点评:本题主要考查直线和圆的位置关系,函数的最值及其几何意义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•徐汇区一模)某种型号汽车的四个轮胎半径相同,均为R=40cm,该车的底盘与轮胎中心在同一水平面上.该车的涉水安全要求是:水面不能超过它的底盘高度.如图所示:某处有一“坑形”地面,其中坑ABC形成顶角为120°的等腰三角形,且AB=BC=60cm,如果地面上有h(cm)(h<40)高的积水(此时坑内全是水,其它因素忽略不计).
(1)当轮胎与AB、BC同时接触时,求证:此轮胎露在水面外的高度(从轮胎最上部到水面的距离)为d=10+
80
3
3
-h;
(2)假定该汽车能顺利通过这个坑(指汽车在过此坑时,符合涉水安全要求),求h的最大值.(精确到1cm).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐汇区一模)某种型号汽车四个轮胎半径相同,均为R=40cm,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为l=280cm (假定四个轮胎中心构成一个矩形).当该型号汽车开上一段上坡路ABC(如图(1)所示,其中∠ABC=a(
3
4
π<a<π
),且前轮E已在BC段上时,后轮中心在F位置;若前轮中心到达G处时,后轮中心在H处(假定该汽车能顺利驶上该上坡路).设前轮中心在E和G处时与地面的接触点分别为S和T,且BS=60cm,ST=100cm.(其它因素忽略不计)
(1)如图(2)所示,FH和GE的延长线交于点O,求证:OE=40cot
α
2
+60
(cm);
(2)当a=
5
6
π时,后轮中心从F处移动到H处实际移动了多少厘米?(精确到1cm)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市徐汇区高三上学期期末考试理科数学试卷(解析版) 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.

(理)某种型号汽车四个轮胎半径相同,均为,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为 (假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路(如图(1)所示,其中()),且前轮已在段上时,后轮中心在位置;若前轮中心到达处时,后轮中心在处(假定该汽车能顺利驶上该上坡路). 设前轮中心在处时与地面的接触点分别为,且,. (其它因素忽略不计)

(1)如图(2)所示,的延长线交于点

求证:(cm);

(2)当=时,后轮中心从处移动到处实际移动了多少厘米? (精确到1cm)

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市徐汇区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.

(文)某种型号汽车的四个轮胎半径相同,均为,该车的底盘与轮胎中心在同一水平面上. 该车的涉水安全要求是:水面不能超过它的底盘高度. 如图所示:某处有一“坑形”地面,其中坑形成顶角为的等腰三角形,且,如果地面上有()高的积水(此时坑内全是水,其它因素忽略不计).

(1)当轮胎与同时接触时,求证:此轮胎露在水面外的高度(从轮胎最上部到水面的距离)为

(2) 假定该汽车能顺利通过这个坑(指汽车在过此坑时,符合涉水安全要求),求的最大值.

(精确到1cm).

 

查看答案和解析>>

同步练习册答案