精英家教网 > 高中数学 > 题目详情

【题目】已知半径为 ,圆心在直线l1:x﹣y+1=0上的圆C与直线l2 x﹣y+1﹣ =0相交于M,N两点,且|MN|=
(1)求圆C的标准方程;
(2)当圆心C的横、纵坐标均为整数时,若对任意m∈R,直线l3:mx﹣y+ +1=0与圆C恒有公共点,求实数a的取值范围.

【答案】
(1)解:由题意,设C(a,a+1),圆心到直线的距离d= =

∴a=0或3+

∴圆C的标准方程为x2+(y﹣1)2=5或(x﹣3﹣ 2+(y﹣4﹣ 2=5;


(2)解:圆C的标准方程为x2+(y﹣1)2=5,对任意m∈R,

直线l3:mx﹣y+ +1=0与圆C恒有公共点,

∴0≤a≤5(m2+1),∴0≤a≤5.


【解析】(1)由题意,设C(a,a+1),圆心到直线的距离d= = ,求出a,可得圆C的标准方程;(2)圆C的标准方程为x2+(y﹣1)2=5,对任意m∈R,直线l3:mx﹣y+ +1=0与圆C恒有公共点, ,即可求实数a的取值范围.
【考点精析】掌握直线与圆的三种位置关系是解答本题的根本,需要知道直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ) 的最小正周期为π,且f(﹣x)=f(x),则(
A.f(x)在 单调递减
B.f(x)在( )单调递减
C.f(x)在(0, )单调递增
D.f(x)在( )单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6道题,其中3道甲类题,2道乙类题,张同学从中任取2道题解答.试求: (Ⅰ)所取的2道题都是甲类题的概率;
(Ⅱ)所取的2道题不是同一类题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC. (Ⅰ)求证:OE⊥FC:
(Ⅱ)若 = 时,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足对于任意实数a,b,c,都有f(a),f(b),f(c)为某三角形的三边长,则成f(x)为“可构造三角形函数”,已知f(x)= 是“可构造三角形函数”,则实数t的取值范围是(
A.[﹣1,0]
B.(﹣∞,0]
C.[﹣2,﹣1]
D.[﹣2,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ )的图象,只需把函数y=sin2x的图象上所有的点(
A.向左平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向右平行移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A为椭圆 =1(a>b>0)上的一个动点,弦AB,AC分别过左右焦点F1 , F2 , 且当线段AF1的中点在y轴上时,cos∠F1AF2= . (Ⅰ)求该椭圆的离心率;
(Ⅱ)设 ,试判断λ12是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构对中学生记忆能力x和识图能力y进行统计分析,得到如下数据:

记忆能力x

4

6

8

10

识图能力y

3

﹡﹡﹡

6

8

由于某些原因,识图能力的一个数据丢失,但已知识图能力样本平均值是5.5.
(Ⅰ)求丢失的数据;
(Ⅱ)经过分析,知道记忆能力x和识图能力y之间具有线性相关关系,请用最小二乘法求出y关于x的线性回归方程
(III)若某一学生记忆能力值为12,请你预测他的识图能力值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ax﹣b(a>0且a≠1)的图象如图1所示,则函数y=cosax+b的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案